Metagenomic Exploration Uncovers Several Novel ‘Candidatus’ Species Involved in Acetate Metabolism in High-Ammonia Thermophilic Biogas Processes

IF 5.7 2区 生物学
George B. Cheng, Erik Bongcam-Rudloff, Anna Schnürer
{"title":"Metagenomic Exploration Uncovers Several Novel ‘Candidatus’ Species Involved in Acetate Metabolism in High-Ammonia Thermophilic Biogas Processes","authors":"George B. Cheng,&nbsp;Erik Bongcam-Rudloff,&nbsp;Anna Schnürer","doi":"10.1111/1751-7915.70133","DOIUrl":null,"url":null,"abstract":"<p>Biogas reactors operating at elevated ammonia levels are commonly susceptible to process disturbances, further augmented at thermophilic temperatures. The major cause is assumed to be linked to inhibition followed by an imbalance between different functional microbial groups, centred around the last two steps of the anaerobic digestion, involving acetogens, syntrophic acetate oxidisers (SAOB) and methanogens. Acetogens are key contributors to reactor efficiency, acting as the crucial link between the hydrolysis and fermentation steps and the final methanogenesis step. Their major product is acetate, at high ammonia levels further converted by SAOB and hydrogenotrophic methanogens to biogas. Even though these functionally different processes are well recognised, less is known about the responsible organism at elevated temperature and ammonia conditions. The main aim of this study was to garner insights into the penultimate stages in three thermophilic reactors (52°C) operated under high ammonia levels (FAN 0.7–1.0 g/L; TAN 3.6–4.4 g/L). The primary objective was to identify potential acetogens and SAOBs. Metagenomic data from the three reactors were analysed for the reductive acetyl-CoA pathway (Wood–Ljungdahl Pathway) and glycine synthase reductase pathway. The results revealed a lack of true acetogens but uncovered three potential SAOB candidates that harbour the WLP, ‘<i>Candidatus</i> Thermodarwinisyntropha acetovorans’, ‘<i>Candidatus</i> Thermosyntrophaceticus schinkii’, ‘<i>Candidatus</i> Thermotepidanaerobacter aceticum’, and a potential lipid-degrader ‘<i>Candidatus</i> Thermosyntrophomonas ammoiaca’.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70133","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70133","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biogas reactors operating at elevated ammonia levels are commonly susceptible to process disturbances, further augmented at thermophilic temperatures. The major cause is assumed to be linked to inhibition followed by an imbalance between different functional microbial groups, centred around the last two steps of the anaerobic digestion, involving acetogens, syntrophic acetate oxidisers (SAOB) and methanogens. Acetogens are key contributors to reactor efficiency, acting as the crucial link between the hydrolysis and fermentation steps and the final methanogenesis step. Their major product is acetate, at high ammonia levels further converted by SAOB and hydrogenotrophic methanogens to biogas. Even though these functionally different processes are well recognised, less is known about the responsible organism at elevated temperature and ammonia conditions. The main aim of this study was to garner insights into the penultimate stages in three thermophilic reactors (52°C) operated under high ammonia levels (FAN 0.7–1.0 g/L; TAN 3.6–4.4 g/L). The primary objective was to identify potential acetogens and SAOBs. Metagenomic data from the three reactors were analysed for the reductive acetyl-CoA pathway (Wood–Ljungdahl Pathway) and glycine synthase reductase pathway. The results revealed a lack of true acetogens but uncovered three potential SAOB candidates that harbour the WLP, ‘Candidatus Thermodarwinisyntropha acetovorans’, ‘Candidatus Thermosyntrophaceticus schinkii’, ‘Candidatus Thermotepidanaerobacter aceticum’, and a potential lipid-degrader ‘Candidatus Thermosyntrophomonas ammoiaca’.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信