Sustainable Permeable Reactive Barrier Materials for Electrokinetic Remediation of Heavy Metals-Contaminated Soil

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Ufra Naseer, Muhammad Ali, Muhammad Adnan Younis, Zhengping Du, Asim Mushtaq, Muhammad Yousaf, Chuntian Qiu, Tianxiang Yue
{"title":"Sustainable Permeable Reactive Barrier Materials for Electrokinetic Remediation of Heavy Metals-Contaminated Soil","authors":"Ufra Naseer,&nbsp;Muhammad Ali,&nbsp;Muhammad Adnan Younis,&nbsp;Zhengping Du,&nbsp;Asim Mushtaq,&nbsp;Muhammad Yousaf,&nbsp;Chuntian Qiu,&nbsp;Tianxiang Yue","doi":"10.1002/adsu.202400722","DOIUrl":null,"url":null,"abstract":"<p>Thegreen and sustainable remediation technologies in curing heavy metals (HMs)-contaminated soil require recyclable, cost-effective, and sustainable materials to achieve good health, and sustainable goals. Electrokinetic remediation coupled with a permeable reactive barrier (EKR-PRB) has been recognized as a viable technique for remedying HMs-contaminated soil, owing to its passive operation, inexpensiveness, and environmental compatibility. However, most fillermaterials in PRB are expensive and environmentally unfriendly, affecting thesustainable development goals of the planet. This review comprehensivelyexamines the current progress on using waste/recyclable materials as fillermaterials in EKR-PRB to remove toxic HMs from contaminated soil. These materialsare waste/recyclable materials, biochar, charcoals, and cork, which have shownhigh potential as EKR-PRB fillers in extracting HM-contaminated soil. Thesematerials provide a path to reduce both remediation costs and environmentalimpact, enhancing the practicality and sustainability of the EKR-PRBapplication. The review commences with a brief discussion of the fundamentalsof EKR-PRB and key operational parameters affecting the remediationperformance, with a focus on the ecological and economic benefits associatedwith these novel filler materials. Ultimately, it presents future perspectivesand outlines critical challenges in scaling up the application of sustainablePRB materials for effective and environmentally responsible soil remediation.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400722","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thegreen and sustainable remediation technologies in curing heavy metals (HMs)-contaminated soil require recyclable, cost-effective, and sustainable materials to achieve good health, and sustainable goals. Electrokinetic remediation coupled with a permeable reactive barrier (EKR-PRB) has been recognized as a viable technique for remedying HMs-contaminated soil, owing to its passive operation, inexpensiveness, and environmental compatibility. However, most fillermaterials in PRB are expensive and environmentally unfriendly, affecting thesustainable development goals of the planet. This review comprehensivelyexamines the current progress on using waste/recyclable materials as fillermaterials in EKR-PRB to remove toxic HMs from contaminated soil. These materialsare waste/recyclable materials, biochar, charcoals, and cork, which have shownhigh potential as EKR-PRB fillers in extracting HM-contaminated soil. Thesematerials provide a path to reduce both remediation costs and environmentalimpact, enhancing the practicality and sustainability of the EKR-PRBapplication. The review commences with a brief discussion of the fundamentalsof EKR-PRB and key operational parameters affecting the remediationperformance, with a focus on the ecological and economic benefits associatedwith these novel filler materials. Ultimately, it presents future perspectivesand outlines critical challenges in scaling up the application of sustainablePRB materials for effective and environmentally responsible soil remediation.

Abstract Image

可持续渗透反应屏障材料在重金属污染土壤电修复中的应用
绿色和可持续的重金属污染土壤修复技术需要可回收的、具有成本效益的和可持续的材料来实现良好的健康和可持续的目标。电动力学修复与渗透性反应屏障(EKR-PRB)结合已被认为是修复hms污染土壤的一种可行的技术,因为它具有被动操作、廉价和环境相容性。然而,PRB中的大多数填充材料价格昂贵且对环境不友好,影响了地球的可持续发展目标。本文综述了目前在EKR-PRB中使用废物/可回收材料作为填料去除污染土壤中有毒hm的研究进展。这些材料是废物/可回收材料、生物炭、木炭和软木,它们作为EKR-PRB填料在提取hm污染土壤中显示出很高的潜力。这些材料提供了降低修复成本和环境影响的途径,增强了ekr - prb应用的实用性和可持续性。本文首先简要讨论了EKR-PRB的基本原理和影响修复性能的关键操作参数,重点讨论了与这些新型填料相关的生态和经济效益。最后,它提出了未来的前景,并概述了在扩大可持续prb材料的应用中有效和对环境负责的土壤修复的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信