Synoptic Observations of Near-Inertial Motions in an Enclosed Basin

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Erica L. Green, Samuel M. Kelly, Andrew J. Lucas, Jay A. Austin, Jonathan D. Nash
{"title":"Synoptic Observations of Near-Inertial Motions in an Enclosed Basin","authors":"Erica L. Green,&nbsp;Samuel M. Kelly,&nbsp;Andrew J. Lucas,&nbsp;Jay A. Austin,&nbsp;Jonathan D. Nash","doi":"10.1029/2024JC021828","DOIUrl":null,"url":null,"abstract":"<p>Near-inertial motions are common in the coastal ocean, producing significant currents, isopycnal displacements, and turbulent mixing. Unknown fractions of near-inertial energy are locally dissipated in the mixed layer and converted to offshore propagating internal waves along the coast. Here, we examine near-inertial motions from July to October 2017 at 10 moorings in Lake Superior, which provides a natural laboratory for the coastal ocean. The lake has an approximate two-layer structure and is dominated by near-inertial currents that reach 0.50 m <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{s}}^{-1}$</annotation>\n </semantics></math> and isopycnal displacements that reach 10 m. Average mode-1 near-inertial kinetic energy (KE) and available potential energy (APE) are 320 J <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math> and 10 J <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math>, respectively. KE is inhibited near the coast and APE has no basin-wide structure. Velocity is separated into a basin-averaged inertial oscillation (IO) and a near inertial wave (NIW) residual. A slab model explains 87% of the IO variance, while the NIW field exhibits 5 W <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-1}$</annotation>\n </semantics></math> offshore energy fluxes along the coasts, a group speed of 0.1 m <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{s}}^{-1}$</annotation>\n </semantics></math>, and a wavelength of 60 km. The IOs and NIWs contain 200 J <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math> and 120 J <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math>, respectively. We determine that 1.0 mW <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math> of wind work goes into to IOs, and 60% of this power is locally dissipated, while the other 40% is converted to NIWs at the coasts. IOs are found to dissipate more rapidly than NIWs (4.4 vs. 7.2 days residence time). NIWs are hypothesized to be important for catalyzing shear instabilities that drive turbulence.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021828","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021828","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Near-inertial motions are common in the coastal ocean, producing significant currents, isopycnal displacements, and turbulent mixing. Unknown fractions of near-inertial energy are locally dissipated in the mixed layer and converted to offshore propagating internal waves along the coast. Here, we examine near-inertial motions from July to October 2017 at 10 moorings in Lake Superior, which provides a natural laboratory for the coastal ocean. The lake has an approximate two-layer structure and is dominated by near-inertial currents that reach 0.50 m  s 1 ${\mathrm{s}}^{-1}$ and isopycnal displacements that reach 10 m. Average mode-1 near-inertial kinetic energy (KE) and available potential energy (APE) are 320 J  m 2 ${\mathrm{m}}^{-2}$ and 10 J  m 2 ${\mathrm{m}}^{-2}$ , respectively. KE is inhibited near the coast and APE has no basin-wide structure. Velocity is separated into a basin-averaged inertial oscillation (IO) and a near inertial wave (NIW) residual. A slab model explains 87% of the IO variance, while the NIW field exhibits 5 W m 1 ${\mathrm{m}}^{-1}$ offshore energy fluxes along the coasts, a group speed of 0.1 m  s 1 ${\mathrm{s}}^{-1}$ , and a wavelength of 60 km. The IOs and NIWs contain 200 J  m 2 ${\mathrm{m}}^{-2}$ and 120 J  m 2 ${\mathrm{m}}^{-2}$ , respectively. We determine that 1.0 mW  m 2 ${\mathrm{m}}^{-2}$ of wind work goes into to IOs, and 60% of this power is locally dissipated, while the other 40% is converted to NIWs at the coasts. IOs are found to dissipate more rapidly than NIWs (4.4 vs. 7.2 days residence time). NIWs are hypothesized to be important for catalyzing shear instabilities that drive turbulence.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信