Jianle Zhou, Xiongliang He, Yanyan Ye, Zhuoxin Zhuang, Xingyu Tang, Junpeng Zhao, Yunjian Ma, Yonghua Wang
{"title":"Design and Construct Cyclic Carbonate Functionalized Chitosan-Based Hydrogel Enabling Photodecarboxylase Immobilization with Enhanced Stability and Reusability","authors":"Jianle Zhou, Xiongliang He, Yanyan Ye, Zhuoxin Zhuang, Xingyu Tang, Junpeng Zhao, Yunjian Ma, Yonghua Wang","doi":"10.1002/adsu.202400862","DOIUrl":null,"url":null,"abstract":"<p>Fatty acid photodecarboxylase (FAP) plays a crucial role in the green production of biofuel and other valuable biochemicals. However, the reusability of immobilized FAP has been limited due to inadequate durability. Here, a porous, translucent chitosan hydrogel sphere carrier functionalized with cyclic carbonate group to enhance the reusability of immobilized FAP is presented. Based on the arrangement of basic amino acid residues on the surface of FAP, bis(cyclic carbonate) containing a flexible chain from CO<sub>2</sub> is designed and synthesized. This compound is used to modify porous hydrogels obtained via a template-etching process. FAP is then covalently immobilized within the hydrogel framework through a reaction with the remaining cyclic carbonate groups, as evidenced by quartz crystal microbalance analysis. The modified porous hydrogel carrier, PH3-BC-II, significantly improves the activity of FAP, achieving a maximum conversion of 70.0%, with the enzyme loading of 125.3 mg g<sup>−1</sup> (dry carrier). Furthermore, PH3-BC-II retains >50% of its initial activity after eight consecutive reaction cycles (total runtime of 24 h) at high fatty acid substrate concentrations. This study provides an effective strategy for constructing stable immobilized (photo)enzymes from sustainable materials.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400862","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fatty acid photodecarboxylase (FAP) plays a crucial role in the green production of biofuel and other valuable biochemicals. However, the reusability of immobilized FAP has been limited due to inadequate durability. Here, a porous, translucent chitosan hydrogel sphere carrier functionalized with cyclic carbonate group to enhance the reusability of immobilized FAP is presented. Based on the arrangement of basic amino acid residues on the surface of FAP, bis(cyclic carbonate) containing a flexible chain from CO2 is designed and synthesized. This compound is used to modify porous hydrogels obtained via a template-etching process. FAP is then covalently immobilized within the hydrogel framework through a reaction with the remaining cyclic carbonate groups, as evidenced by quartz crystal microbalance analysis. The modified porous hydrogel carrier, PH3-BC-II, significantly improves the activity of FAP, achieving a maximum conversion of 70.0%, with the enzyme loading of 125.3 mg g−1 (dry carrier). Furthermore, PH3-BC-II retains >50% of its initial activity after eight consecutive reaction cycles (total runtime of 24 h) at high fatty acid substrate concentrations. This study provides an effective strategy for constructing stable immobilized (photo)enzymes from sustainable materials.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.