An Integrable Two-Component Degasperis–Procesi Equation

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Nianhua Li, Bao-Feng Feng
{"title":"An Integrable Two-Component Degasperis–Procesi Equation","authors":"Nianhua Li,&nbsp;Bao-Feng Feng","doi":"10.1111/sapm.70045","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We propose a new two-component Degasperis–Procesi (2-DP) equation, which is shown to be integrable. First of all, we derive an integrable three-component system from the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) associativity equation and construct its Lax pair and bi-Hamiltonian structure. Next, a 2-DP equation is proposed as further reduction of this three-component system, along with its Lax pair and associated bi-Hamiltonian structure. A reciprocal transformation is found to connect the 2-DP equation with a negative flow in a coupled KdV hierarchy, the associated system has the property of Painlevé. Finally, infinitely many conserved quantities, simple periodic and soliton solutions for the newly integrable 2-DP equation are provided.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70045","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new two-component Degasperis–Procesi (2-DP) equation, which is shown to be integrable. First of all, we derive an integrable three-component system from the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) associativity equation and construct its Lax pair and bi-Hamiltonian structure. Next, a 2-DP equation is proposed as further reduction of this three-component system, along with its Lax pair and associated bi-Hamiltonian structure. A reciprocal transformation is found to connect the 2-DP equation with a negative flow in a coupled KdV hierarchy, the associated system has the property of Painlevé. Finally, infinitely many conserved quantities, simple periodic and soliton solutions for the newly integrable 2-DP equation are provided.

可积分双分量德加斯佩里斯-普罗塞西方程
我们提出了一个新的两分量德加斯佩里斯-普罗切斯(2-DP)方程,并证明它是可积分的。首先,我们从维特-迪克格拉夫-韦林德-韦林德(Witten-Dijkgraaf-Verlinde-Verlinde,WDVV)关联方程推导出一个可积分的三分量系统,并构建了它的拉克斯对和双哈密顿结构。接下来,我们提出了一个 2-DP 方程,作为该三分量系统的进一步还原,以及其 Lax 对和相关的双哈密顿结构。我们发现了一种倒易变换,可以将 2-DP 方程与耦合 KdV 层次中的负流连接起来,相关系统具有 Painlevé 特性。最后,为新的可积分 2-DP 方程提供了无穷多个守恒量、简单周期解和孤子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信