{"title":"Prediction of Verbal Abilities From Brain Connectivity Data Across the Lifespan Using a Machine Learning Approach","authors":"Deborah Früh, Camilla Mendl-Heinisch, Nora Bittner, Susanne Weis, Svenja Caspers","doi":"10.1002/hbm.70191","DOIUrl":null,"url":null,"abstract":"<p>Compared to nonverbal cognition such as executive or memory functions, language-related cognition generally appears to remain more stable until later in life. Nevertheless, different language-related processes, for example, verbal fluency versus vocabulary knowledge, appear to show different trajectories across the life span. One potential explanation for differences in verbal functions may be alterations in the functional and structural network architecture of different large-scale brain networks. For example, differences in verbal abilities have been linked to the communication within and between the frontoparietal (FPN) and default mode network (DMN). It, however, remains open whether brain connectivity within these networks may be informative for language performance at the individual level across the life span. Further information in this regard may be highly desirable as verbal abilities allow us to participate in daily activities, are associated with quality of life, and may be considered in preventive and interventional setups to foster cognitive health across the life span. So far, mixed prediction results based on resting-state functional connectivity (FC) and structural connectivity (SC) data have been reported for language abilities across different samples, age groups, and machine-learning (ML) approaches. Therefore, the current study set out to investigate the predictability of verbal fluency and vocabulary knowledge based on brain connectivity data in the DMN, FPN, and the whole brain using an ML approach in a lifespan sample (<i>N</i> = 717; age range: 18–85) from the 1000BRAINS study. Prediction performance was, thereby, systematically compared across (i) verbal [verbal fluency and vocabulary knowledge] and nonverbal abilities [processing speed and visual working memory], (ii) modalities [FC and SC data], (iii) feature sets [DMN, FPN, DMN-FPN, and whole brain], and (iv) samples [total, younger, and older aged group]. Results from the current study showed that verbal abilities could not be reliably predicted from FC and SC data across feature sets and samples. Thereby, no predictability differences emerged between verbal fluency and vocabulary knowledge across input modalities, feature sets, and samples. In contrast to verbal functions, nonverbal abilities could be moderately predicted from connectivity data, particularly SC, in the total and younger age group. Satisfactory prediction performance for nonverbal cognitive functions based on currently chosen connectivity data was, however, not encountered in the older age group. Current results, hence, emphasized that verbal functions may be more difficult to predict from brain connectivity data in domain-general cognitive networks and the whole brain compared to nonverbal abilities, particularly executive functions, across the life span. Thus, it appears warranted to more closely investigate differences in predictability between different cognitive functions and age groups.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70191","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70191","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to nonverbal cognition such as executive or memory functions, language-related cognition generally appears to remain more stable until later in life. Nevertheless, different language-related processes, for example, verbal fluency versus vocabulary knowledge, appear to show different trajectories across the life span. One potential explanation for differences in verbal functions may be alterations in the functional and structural network architecture of different large-scale brain networks. For example, differences in verbal abilities have been linked to the communication within and between the frontoparietal (FPN) and default mode network (DMN). It, however, remains open whether brain connectivity within these networks may be informative for language performance at the individual level across the life span. Further information in this regard may be highly desirable as verbal abilities allow us to participate in daily activities, are associated with quality of life, and may be considered in preventive and interventional setups to foster cognitive health across the life span. So far, mixed prediction results based on resting-state functional connectivity (FC) and structural connectivity (SC) data have been reported for language abilities across different samples, age groups, and machine-learning (ML) approaches. Therefore, the current study set out to investigate the predictability of verbal fluency and vocabulary knowledge based on brain connectivity data in the DMN, FPN, and the whole brain using an ML approach in a lifespan sample (N = 717; age range: 18–85) from the 1000BRAINS study. Prediction performance was, thereby, systematically compared across (i) verbal [verbal fluency and vocabulary knowledge] and nonverbal abilities [processing speed and visual working memory], (ii) modalities [FC and SC data], (iii) feature sets [DMN, FPN, DMN-FPN, and whole brain], and (iv) samples [total, younger, and older aged group]. Results from the current study showed that verbal abilities could not be reliably predicted from FC and SC data across feature sets and samples. Thereby, no predictability differences emerged between verbal fluency and vocabulary knowledge across input modalities, feature sets, and samples. In contrast to verbal functions, nonverbal abilities could be moderately predicted from connectivity data, particularly SC, in the total and younger age group. Satisfactory prediction performance for nonverbal cognitive functions based on currently chosen connectivity data was, however, not encountered in the older age group. Current results, hence, emphasized that verbal functions may be more difficult to predict from brain connectivity data in domain-general cognitive networks and the whole brain compared to nonverbal abilities, particularly executive functions, across the life span. Thus, it appears warranted to more closely investigate differences in predictability between different cognitive functions and age groups.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.