On Shehtman's two problems

IF 1 2区 数学 Q1 MATHEMATICS
Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan, Jan van Mill
{"title":"On Shehtman's two problems","authors":"Guram Bezhanishvili,&nbsp;Nick Bezhanishvili,&nbsp;Joel Lucero-Bryan,&nbsp;Jan van Mill","doi":"10.1112/jlms.70090","DOIUrl":null,"url":null,"abstract":"<p>We provide partial solutions to two problems posed by Shehtman concerning the modal logic of the Čech–Stone compactification of an ordinal space. We use the Continuum Hypothesis to give a finite axiomatization of the modal logic of <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>(</mo>\n <msup>\n <mi>ω</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\beta (\\omega ^2)$</annotation>\n </semantics></math>, thus resolving Shehtman's first problem for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math>. We also characterize modal logics arising from the Čech–Stone compactification of an ordinal <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> provided the Cantor normal form of <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> satisfies an additional condition. This gives a partial solution of Shehtman's second problem.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70090","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70090","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide partial solutions to two problems posed by Shehtman concerning the modal logic of the Čech–Stone compactification of an ordinal space. We use the Continuum Hypothesis to give a finite axiomatization of the modal logic of β ( ω 2 ) $\beta (\omega ^2)$ , thus resolving Shehtman's first problem for n = 2 $n=2$ . We also characterize modal logics arising from the Čech–Stone compactification of an ordinal γ $\gamma$ provided the Cantor normal form of γ $\gamma$ satisfies an additional condition. This gives a partial solution of Shehtman's second problem.

Abstract Image

关于谢特曼的两个问题
本文给出了Shehtman关于序空间Čech-Stone紧化的模态逻辑的两个问题的部分解。我们使用连续统假设给出β (ω 2) $\beta (\omega ^2)$模态逻辑的有限公理化,从而解决了谢尔曼对于n = 2的第一个问题$n=2$。如果γ $\gamma$的康托范式满足一个附加条件,我们还描述了由有序γ $\gamma$的Čech-Stone紧化引起的模态逻辑。这就给出了谢尔曼第二个问题的部分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信