Broadband Receiver for VLF On-Orbit Wave-Particle Interaction Experiments

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
I. R. Linscott, U. S. Inan, D. S. Lauben, W. M. Farrell, J. Payne, B. Mossiwir, C. Wang, K. Lee, W. R. Johnston, M. J. Starks, J. P. McCollough, J. C. Sanchez, Y.-J. Su
{"title":"Broadband Receiver for VLF On-Orbit Wave-Particle Interaction Experiments","authors":"I. R. Linscott,&nbsp;U. S. Inan,&nbsp;D. S. Lauben,&nbsp;W. M. Farrell,&nbsp;J. Payne,&nbsp;B. Mossiwir,&nbsp;C. Wang,&nbsp;K. Lee,&nbsp;W. R. Johnston,&nbsp;M. J. Starks,&nbsp;J. P. McCollough,&nbsp;J. C. Sanchez,&nbsp;Y.-J. Su","doi":"10.1029/2022JA030927","DOIUrl":null,"url":null,"abstract":"<p>A broadband, multi-channel Very Low Frequency (VLF) radio receiver (BBR), developed as a sensitive analog, vector wave receiver for whistler-mode signals in the VLF range, was successfully flown on the Air Force Demonstration Science Experiment (DSX) Mission to Mid-Earth Orbit (Johnston et al., 2023, https://doi.org/10.1029/2022JA030771). The BBR is a radiation resistant, 5 × 2 channel receiver, integrated into the Wave Induced Precipitation of Electron Radiation (WIPER) instrument package on DSX. The BBR accepts electric wave signal inputs from (a) an 81.6 m tip-to-tip dipole VLF antenna on the DSX Y-boom, (b) a 16.3 m tip-to-tip dipole antenna on the DSX Z-boom, and (c) signals from a Tri-Axial Search Coil (TASC), an three-orthogonal axes magnetic wave search coil magnetometer mounted on the DSX + <i>Z</i> boom. The electric and magnetic VLF signals are processed in the BBR by two independent, radiation hardened five channel receivers: (a) a receiver of heritage design with commercial off-the-shelf components (COTS), and (b) a micro-receiver incorporating custom, radiation resistant, micro-electronics. The bandwidth of all five channels in both the heritage and micro designs covers from 10 Hz to 50 kHz. A software “receiver”, SRx, running in the on-board flight computer, the ECS, manages the BBR's data flow and data delivery to the ground. The SRx additionally computes supporting science data products such as Fourier transforms, multi-band filters and cross correlations among the BBR's electric and magnetic field channels to facilitate production of VLF wave normals.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022JA030927","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022JA030927","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A broadband, multi-channel Very Low Frequency (VLF) radio receiver (BBR), developed as a sensitive analog, vector wave receiver for whistler-mode signals in the VLF range, was successfully flown on the Air Force Demonstration Science Experiment (DSX) Mission to Mid-Earth Orbit (Johnston et al., 2023, https://doi.org/10.1029/2022JA030771). The BBR is a radiation resistant, 5 × 2 channel receiver, integrated into the Wave Induced Precipitation of Electron Radiation (WIPER) instrument package on DSX. The BBR accepts electric wave signal inputs from (a) an 81.6 m tip-to-tip dipole VLF antenna on the DSX Y-boom, (b) a 16.3 m tip-to-tip dipole antenna on the DSX Z-boom, and (c) signals from a Tri-Axial Search Coil (TASC), an three-orthogonal axes magnetic wave search coil magnetometer mounted on the DSX + Z boom. The electric and magnetic VLF signals are processed in the BBR by two independent, radiation hardened five channel receivers: (a) a receiver of heritage design with commercial off-the-shelf components (COTS), and (b) a micro-receiver incorporating custom, radiation resistant, micro-electronics. The bandwidth of all five channels in both the heritage and micro designs covers from 10 Hz to 50 kHz. A software “receiver”, SRx, running in the on-board flight computer, the ECS, manages the BBR's data flow and data delivery to the ground. The SRx additionally computes supporting science data products such as Fourier transforms, multi-band filters and cross correlations among the BBR's electric and magnetic field channels to facilitate production of VLF wave normals.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信