Loss Cone Offset Method for Evaluating the Effect of Magnetic Field Line Curvature Scattering (FLCS)

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Ziming Wei, Yiqun Yu, Longxing Ma, Jinbin Cao
{"title":"Loss Cone Offset Method for Evaluating the Effect of Magnetic Field Line Curvature Scattering (FLCS)","authors":"Ziming Wei,&nbsp;Yiqun Yu,&nbsp;Longxing Ma,&nbsp;Jinbin Cao","doi":"10.1029/2024JA033422","DOIUrl":null,"url":null,"abstract":"<p>Magnetic Field Line Curvature Scattering (FLCS) is one of the important loss mechanism for energetic particles, referring to the scattering phenomenon where charged particles experience changes in their pitch angles due to the curvature and non-uniformity of magnetic field. Previous methods evaluating FLCS were suitable for less stretched configurations like dipole magnetic fields, but under Ts05 model, they led to non-physical results, especially in regions where the adiabatic parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n </mrow>\n <annotation> $\\varepsilon $</annotation>\n </semantics></math> exceeds 0.584. To address this, we developed a new method for evaluating FLCS, named the Loss Cone Offset method (LCOM). The method first anchors the offset of loss cone center due to Borovsky et al. (2022), https://doi.org/10.1029/2021ja030106 and works by constructing the pitch angle offset after one FLCS as a function of initial pitch angle and gyro-phase angle, and then correcting the function by parameters fitting using test-particle-tracing results. Our calculations can effectively evaluate particle scattering due to FLCS in the range of 0°–90° pitch angles and adiabatic parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n </mrow>\n <annotation> $\\varepsilon $</annotation>\n </semantics></math> ranging from 0.1 to 0.96. Loss Cone Offset method has good compatibility with previous methods under dipole magnetic field or TS05 magnetic field with low adiabatic parameters. It can effectively avoid non-physical results under stretched magnetic field and high adiabatic parameters, and evaluate the FLCS influence. Comparison with theoretical calculations, empirical formulas, and test-particle results demonstrates that the LCOM serves as an easy-to-use and reliable model for predicting particle loss due to FLCS in the magnetospheric dynamics. Its application deepens understanding of FLCS mechanisms, providing robust methodological support for developing physical models.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033422","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic Field Line Curvature Scattering (FLCS) is one of the important loss mechanism for energetic particles, referring to the scattering phenomenon where charged particles experience changes in their pitch angles due to the curvature and non-uniformity of magnetic field. Previous methods evaluating FLCS were suitable for less stretched configurations like dipole magnetic fields, but under Ts05 model, they led to non-physical results, especially in regions where the adiabatic parameter ε $\varepsilon $ exceeds 0.584. To address this, we developed a new method for evaluating FLCS, named the Loss Cone Offset method (LCOM). The method first anchors the offset of loss cone center due to Borovsky et al. (2022), https://doi.org/10.1029/2021ja030106 and works by constructing the pitch angle offset after one FLCS as a function of initial pitch angle and gyro-phase angle, and then correcting the function by parameters fitting using test-particle-tracing results. Our calculations can effectively evaluate particle scattering due to FLCS in the range of 0°–90° pitch angles and adiabatic parameter ε $\varepsilon $ ranging from 0.1 to 0.96. Loss Cone Offset method has good compatibility with previous methods under dipole magnetic field or TS05 magnetic field with low adiabatic parameters. It can effectively avoid non-physical results under stretched magnetic field and high adiabatic parameters, and evaluate the FLCS influence. Comparison with theoretical calculations, empirical formulas, and test-particle results demonstrates that the LCOM serves as an easy-to-use and reliable model for predicting particle loss due to FLCS in the magnetospheric dynamics. Its application deepens understanding of FLCS mechanisms, providing robust methodological support for developing physical models.

评价磁场线曲率散射效应的损耗锥偏移法
磁场线曲率散射(FLCS)是高能粒子的重要损耗机制之一,是指带电粒子由于磁场的曲率和不均匀性而导致俯仰角发生变化的散射现象。以往评价FLCS的方法适用于偶极磁场等拉伸程度较低的结构,但在Ts05模型下,它们导致了非物理结果,特别是在绝热参数ε $\varepsilon $超过0.584的区域。为了解决这个问题,我们开发了一种评估FLCS的新方法,称为损耗锥偏移法(LCOM)。该方法首先锚定由于Borovsky等人(2022),https://doi.org/10.1029/2021ja030106造成的损失锥中心偏移,并通过将一次FLCS后的俯仰角偏移构建为初始俯仰角和陀螺相位角的函数,然后使用测试粒子跟踪结果通过参数拟合对函数进行校正。我们的计算可以有效地评估在0°~ 90°俯仰角范围内,绝热参数ε $\varepsilon $在0.1 ~ 0.96范围内由于FLCS引起的粒子散射。在低绝热参数的偶极子磁场或TS05磁场下,损耗锥偏置法与以往的方法具有良好的兼容性。它可以有效地避免拉伸磁场和高绝热参数下的非物理结果,并评估FLCS的影响。与理论计算、经验公式和试验颗粒结果的比较表明,LCOM是磁层动力学中FLCS引起的颗粒损失的一个简单、可靠的预测模型。它的应用加深了对FLCS机制的理解,为开发物理模型提供了强有力的方法支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信