Historical and Projected Cropland Impacts of Heatwaves in Central Asia Under Climate Change

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2025-03-22 DOI:10.1029/2024EF005595
Tao Li, Fengjiao Song, Jiayu Bao, Philippe De Maeyer, Ye Yuan, Xiaoran Huang, Tao Yu, Naibi Sulei, Anming Bao, Peter Goethals
{"title":"Historical and Projected Cropland Impacts of Heatwaves in Central Asia Under Climate Change","authors":"Tao Li,&nbsp;Fengjiao Song,&nbsp;Jiayu Bao,&nbsp;Philippe De Maeyer,&nbsp;Ye Yuan,&nbsp;Xiaoran Huang,&nbsp;Tao Yu,&nbsp;Naibi Sulei,&nbsp;Anming Bao,&nbsp;Peter Goethals","doi":"10.1029/2024EF005595","DOIUrl":null,"url":null,"abstract":"<p>Central Asia (CA) is a critical agricultural region, contributing significantly to global food and cotton production, yet it faces increasing threats from extreme heatwaves (HWs) due to global warming. Despite this, the specific impacts of historical and future HWs on CA's cropland remain underexplored. Here, using five bias-corrected global circulation models from the Inter-Sectoral Impact Model Intercomparison Project Phase 3b (ISIMIP3b), we present a detailed analysis of CA's cropland exposure to HWs from historical periods (1995–2014) and under three Shared Socioeconomic Pathways (SSP126, SSP370, and SSP585) for 2021–2100. Compared to historical levels, we find that exposure to heatwave frequency could increase by 199% by 2081–2100 under SSP126, while exposure to heatwave duration could rise by as much as 852% and 1143% under SSP370 and SSP585, respectively. Northern Kazakhstan emerges as particularly vulnerable, with the highest exposure levels across scenarios. Interactive effects between climate shifts and land-use changes are the dominant contributors, accounting for over 50% of total exposure in each scenario. These findings highlight CA's vulnerability to HWs under various climate pathways, emphasizing the urgency of targeted adaptation strategies to protect regional agricultural resilience and, by extension, global food security.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 3","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005595","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005595","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Central Asia (CA) is a critical agricultural region, contributing significantly to global food and cotton production, yet it faces increasing threats from extreme heatwaves (HWs) due to global warming. Despite this, the specific impacts of historical and future HWs on CA's cropland remain underexplored. Here, using five bias-corrected global circulation models from the Inter-Sectoral Impact Model Intercomparison Project Phase 3b (ISIMIP3b), we present a detailed analysis of CA's cropland exposure to HWs from historical periods (1995–2014) and under three Shared Socioeconomic Pathways (SSP126, SSP370, and SSP585) for 2021–2100. Compared to historical levels, we find that exposure to heatwave frequency could increase by 199% by 2081–2100 under SSP126, while exposure to heatwave duration could rise by as much as 852% and 1143% under SSP370 and SSP585, respectively. Northern Kazakhstan emerges as particularly vulnerable, with the highest exposure levels across scenarios. Interactive effects between climate shifts and land-use changes are the dominant contributors, accounting for over 50% of total exposure in each scenario. These findings highlight CA's vulnerability to HWs under various climate pathways, emphasizing the urgency of targeted adaptation strategies to protect regional agricultural resilience and, by extension, global food security.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信