Electrodeposition of Carbon-Trapping Minerals in Seawater for Variable Electrochemical Potentials and Carbon Dioxide Injections (Adv. Sustainable Syst. 3/2025)
IF 6.5 3区 材料科学Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
{"title":"Electrodeposition of Carbon-Trapping Minerals in Seawater for Variable Electrochemical Potentials and Carbon Dioxide Injections (Adv. Sustainable Syst. 3/2025)","authors":"Nishu Devi, Xiaohui Gong, Daiki Shoji, Amy Wagner, Alexandre Guerini, Davide Zampini, Jeffrey Lopez, Alessandro F. Rotta Loria","doi":"10.1002/adsu.202570033","DOIUrl":null,"url":null,"abstract":"<p><b>Seawater Electrolysis</b></p><p>In article number 2400943, Alessandro F. Rotta Loria and co-workers present an electrochemical approach to synthesize mineral aggregates of variable compositions, structures, shapes, and sizes in seawater while absorbing sequestered CO<sub>2</sub>. This work advances the understanding of electrochemical synthesis and material processing in aqueous solutions, with a focus on the mineralization of calcareous compounds for use in the construction, manufacturing, and environmental protection industries.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202570033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202570033","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Seawater Electrolysis
In article number 2400943, Alessandro F. Rotta Loria and co-workers present an electrochemical approach to synthesize mineral aggregates of variable compositions, structures, shapes, and sizes in seawater while absorbing sequestered CO2. This work advances the understanding of electrochemical synthesis and material processing in aqueous solutions, with a focus on the mineralization of calcareous compounds for use in the construction, manufacturing, and environmental protection industries.
海水中碳捕获矿物的电沉积变化电化学电位和二氧化碳注入(ad . Sustainable system . 3/2025)
海水电解在2400943号文章中,Alessandro F. Rotta Loria及其同事提出了一种电化学方法,可以在吸收封存的二氧化碳的同时,在海水中合成不同成分、结构、形状和大小的矿物聚集体。这项工作促进了对水溶液中电化学合成和材料加工的理解,重点是用于建筑、制造业和环保行业的钙质化合物的矿化。
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.