Xi Liu, Xin Guo, Tingjing Li, Xue Wang, Yulu Guan, Di Wang, Yinjie Wang, Xiaonan Ji, Qingsong Gao, Jianhui Ji
{"title":"OsGSK1 interacts with OsbZIP72 to regulate salt response in rice","authors":"Xi Liu, Xin Guo, Tingjing Li, Xue Wang, Yulu Guan, Di Wang, Yinjie Wang, Xiaonan Ji, Qingsong Gao, Jianhui Ji","doi":"10.1111/tpj.70112","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Soil salinity remains a continuing threat to agriculture worldwide, greatly affecting seedling development and reducing crop yield. Thus, the cultivation of salt-resistant crops on salinized land is an excellent strategy to ensure food security. The rice GSK3-like protein kinase, OsGSK1, is known to play a role in the response to various abiotic stressors; however, the underlying molecular mechanism of this response remains unclear. Here, we aimed to elucidate the mechanism by which OsGSK1 regulates the salt stress response. We found that OsGSK1 interacts with OsbZIP72 to negatively regulate salt stress tolerance in rice plants. <i>OsGSK1</i> is specifically induced by cold, salt stress, and abscisic acid (ABA) treatment. OsGSK1 was found to be localized in the nucleus and cytoplasm, where it physically interacts with OsbZIP72 – a positive regulator of the rice salt stress response. OsbZIP72 directly binds to the ABA response element in the <i>OsNHX1</i> promoter to regulate its expression under salt stress, whereas OsGSK1 interacts with OsbZIP72 to repress <i>OsNHX1</i> expression. The knockout of <i>OsGSK1</i> increased salt tolerance without affecting the main agronomic traits of the mutant plants. Therefore, OsGSK1 could be used to maintain rice yield in salinized soil.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 6","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70112","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil salinity remains a continuing threat to agriculture worldwide, greatly affecting seedling development and reducing crop yield. Thus, the cultivation of salt-resistant crops on salinized land is an excellent strategy to ensure food security. The rice GSK3-like protein kinase, OsGSK1, is known to play a role in the response to various abiotic stressors; however, the underlying molecular mechanism of this response remains unclear. Here, we aimed to elucidate the mechanism by which OsGSK1 regulates the salt stress response. We found that OsGSK1 interacts with OsbZIP72 to negatively regulate salt stress tolerance in rice plants. OsGSK1 is specifically induced by cold, salt stress, and abscisic acid (ABA) treatment. OsGSK1 was found to be localized in the nucleus and cytoplasm, where it physically interacts with OsbZIP72 – a positive regulator of the rice salt stress response. OsbZIP72 directly binds to the ABA response element in the OsNHX1 promoter to regulate its expression under salt stress, whereas OsGSK1 interacts with OsbZIP72 to repress OsNHX1 expression. The knockout of OsGSK1 increased salt tolerance without affecting the main agronomic traits of the mutant plants. Therefore, OsGSK1 could be used to maintain rice yield in salinized soil.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.