The Role of Dynamic Seepage Response in Sediment Transport and Tsunami-Induced Scour

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Zhengyu Hu, Wen-Gang Qi, Yuzhu Pearl Li
{"title":"The Role of Dynamic Seepage Response in Sediment Transport and Tsunami-Induced Scour","authors":"Zhengyu Hu,&nbsp;Wen-Gang Qi,&nbsp;Yuzhu Pearl Li","doi":"10.1029/2024JC021084","DOIUrl":null,"url":null,"abstract":"<p>Tsunamis have long been recognized to destabilize the seabed by causing severe erosion and potential liquefaction. However, the effect of the dynamic seepage response induced by tsunami loading on sediment transport remains elusive. Here, we explicitly quantify the role and mechanics of seepage response in field-scale tsunami-induced bed mobility and scour through theoretical analyses and fully coupled hydrodynamic and morphological simulations. The increased hydraulic gradient can lower the onset threshold of the sediment motion, thus facilitating sediment transport. In the meantime, it can also curtail the fluid–sediment momentum transfer, consequently weakening sediment transport. The competing effects of seepage response on the onset threshold and fluid agitation are such that the seepage response during the depression wave does not necessarily increase bed mobility. The suspended load transport can dominate the near-field scour processes, as demonstrated with the scour beneath a submarine pipeline. The seabed suction response to the elevation wave shows insignificant effects on the continuous exchange between the suspended load and bed load, although it inhibits the near-bed sediment concentration. The seabed injection response to the depression wave induces more bed load particles to be entrained into the water column, contributing to the increased concentration. This results in increased sediment transport and exacerbated scour, especially for the bed liquefaction scenario. The seepage response plays a critical role in the spatiotemporal variations of the seabed morphology and the sediment suspension. The outcomes significantly update the knowledge about the role of seepage in the progress of tsunami-induced sediment transport and scour.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021084","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021084","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Tsunamis have long been recognized to destabilize the seabed by causing severe erosion and potential liquefaction. However, the effect of the dynamic seepage response induced by tsunami loading on sediment transport remains elusive. Here, we explicitly quantify the role and mechanics of seepage response in field-scale tsunami-induced bed mobility and scour through theoretical analyses and fully coupled hydrodynamic and morphological simulations. The increased hydraulic gradient can lower the onset threshold of the sediment motion, thus facilitating sediment transport. In the meantime, it can also curtail the fluid–sediment momentum transfer, consequently weakening sediment transport. The competing effects of seepage response on the onset threshold and fluid agitation are such that the seepage response during the depression wave does not necessarily increase bed mobility. The suspended load transport can dominate the near-field scour processes, as demonstrated with the scour beneath a submarine pipeline. The seabed suction response to the elevation wave shows insignificant effects on the continuous exchange between the suspended load and bed load, although it inhibits the near-bed sediment concentration. The seabed injection response to the depression wave induces more bed load particles to be entrained into the water column, contributing to the increased concentration. This results in increased sediment transport and exacerbated scour, especially for the bed liquefaction scenario. The seepage response plays a critical role in the spatiotemporal variations of the seabed morphology and the sediment suspension. The outcomes significantly update the knowledge about the role of seepage in the progress of tsunami-induced sediment transport and scour.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信