{"title":"ATP11B Modulates Microglial Lipid Metabolism and Alleviates Alzheimer's Disease Pathology","authors":"Yuchen Zhang, Shibo Zhang, Xuyu Zhao, Peiru Wu, Yiwei Ying, Lingling Wu, Junyi Zhuang, Zixin Chen, Yufan Chao, Xin Dong, Robert Chunhua Zhao, Jiao Wang","doi":"10.1002/mco2.70139","DOIUrl":null,"url":null,"abstract":"<p>Abnormal lipid metabolism in microglia leads to the formation of pathological lipid droplets (LDs), a phenomenon also observed in neurodegenerative diseases such as Alzheimer's disease (AD). The abnormal accumulation of LDs disrupts normal cellular function and exacerbates the pathological process of AD. ATP11B is a P4-ATPase and the expression of <i>Atp11b</i> changes in the brain of patients with AD and diseases of lipid metabolism. The present study aimed to explore the regulatory role of ATP11B in microglial lipid metabolism and assess the potential of ATP11B as a therapeutic target for AD. <i>Atp11b</i> deficiency caused excessive fatty acid uptake and activated the PPAR signaling pathway, resulting in abnormal synthesis of neutral lipids and mitochondrial energy metabolism in microglia. Further results showed that <i>Atp11b</i> deficiency led to the accumulation of pathological LDs in microglia and AD mice. Conversely, overexpression of <i>Atp11b</i> alleviated exploratory behavior impairment, learning and memory impairment, LD accumulation, beta-amyloid (Aβ) deposition, and inflammatory response in the brain of AD mice. These findings provide important clues for a better understanding of the pathogenesis of AD and for developing novel therapeutic strategies.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 4","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70139","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abnormal lipid metabolism in microglia leads to the formation of pathological lipid droplets (LDs), a phenomenon also observed in neurodegenerative diseases such as Alzheimer's disease (AD). The abnormal accumulation of LDs disrupts normal cellular function and exacerbates the pathological process of AD. ATP11B is a P4-ATPase and the expression of Atp11b changes in the brain of patients with AD and diseases of lipid metabolism. The present study aimed to explore the regulatory role of ATP11B in microglial lipid metabolism and assess the potential of ATP11B as a therapeutic target for AD. Atp11b deficiency caused excessive fatty acid uptake and activated the PPAR signaling pathway, resulting in abnormal synthesis of neutral lipids and mitochondrial energy metabolism in microglia. Further results showed that Atp11b deficiency led to the accumulation of pathological LDs in microglia and AD mice. Conversely, overexpression of Atp11b alleviated exploratory behavior impairment, learning and memory impairment, LD accumulation, beta-amyloid (Aβ) deposition, and inflammatory response in the brain of AD mice. These findings provide important clues for a better understanding of the pathogenesis of AD and for developing novel therapeutic strategies.