A Distributionally Robust Post-Disaster Recovery Method for Distribution Networks Considering Line Repair and Spatiotemporal Dynamic Scheduling of Mobile Energy Storage

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Mengqi Huang, Yonghui Li, Jun Yang, Mengke Wang, Wangang He, Issarachai Ngamroo
{"title":"A Distributionally Robust Post-Disaster Recovery Method for Distribution Networks Considering Line Repair and Spatiotemporal Dynamic Scheduling of Mobile Energy Storage","authors":"Mengqi Huang,&nbsp;Yonghui Li,&nbsp;Jun Yang,&nbsp;Mengke Wang,&nbsp;Wangang He,&nbsp;Issarachai Ngamroo","doi":"10.1049/rpg2.70027","DOIUrl":null,"url":null,"abstract":"<p>Extreme disasters often cause large-scale power outages in distribution networks due to damaged lines, significantly impacting system reliability. Current research faces several challenges: traditional methods fail to fully consider the uncertainty of line repair time, existing robust optimization methods encounter difficulties in solving problems involving mobile energy storage (ME), and simple symmetric intervals cannot accurately describe the uncertainty of repair time. To address these challenges, this paper proposes a two-stage distributionally robust post-disaster recovery model that optimizes the connection location of ME in the first stage and adjusts the output of resources such as ME in the second stage to minimize load loss. A Weibull distribution is introduced to fit the repair time of damaged lines, while confidence intervals replace simple symmetric fluctuation intervals to handle the uncertainty of line repair time, improving prediction credibility. The column and constraint generation algorithm is applied to decompose and solve the model. Case studies demonstrate the proposed method's efficacy in maintaining power supply during recovery by simultaneously addressing repair time uncertainty and PV generation variability. At least 26% of the load can be in service even under worst-case scenarios.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.70027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme disasters often cause large-scale power outages in distribution networks due to damaged lines, significantly impacting system reliability. Current research faces several challenges: traditional methods fail to fully consider the uncertainty of line repair time, existing robust optimization methods encounter difficulties in solving problems involving mobile energy storage (ME), and simple symmetric intervals cannot accurately describe the uncertainty of repair time. To address these challenges, this paper proposes a two-stage distributionally robust post-disaster recovery model that optimizes the connection location of ME in the first stage and adjusts the output of resources such as ME in the second stage to minimize load loss. A Weibull distribution is introduced to fit the repair time of damaged lines, while confidence intervals replace simple symmetric fluctuation intervals to handle the uncertainty of line repair time, improving prediction credibility. The column and constraint generation algorithm is applied to decompose and solve the model. Case studies demonstrate the proposed method's efficacy in maintaining power supply during recovery by simultaneously addressing repair time uncertainty and PV generation variability. At least 26% of the load can be in service even under worst-case scenarios.

Abstract Image

考虑线路维修和移动储能时空动态调度的配电网分布式鲁棒灾后恢复方法
极端灾害往往导致配电网因线路损坏而大面积停电,严重影响配电网的可靠性。目前的研究面临着传统方法未能充分考虑线路维修时间的不确定性,现有的鲁棒优化方法在解决移动储能问题时存在困难,简单的对称区间不能准确描述维修时间的不确定性等挑战。针对这些挑战,本文提出了一种两阶段分布式鲁棒灾后恢复模型,该模型在第一阶段优化ME的连接位置,在第二阶段调整ME等资源的输出,以最大限度地减少负载损失。采用威布尔分布拟合受损线路的修复时间,并用置信区间代替简单的对称波动区间处理线路修复时间的不确定性,提高了预测的可信度。采用列约束生成算法对模型进行分解求解。案例研究表明,该方法通过同时解决修复时间的不确定性和光伏发电的可变性,在恢复期间保持电力供应的有效性。即使在最坏的情况下,也至少有26%的负载可以投入使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信