A New Trend to Introduce a Biocompatible Drug Carrier Based on Immunoglobulin for Prolonged Release of Palladium (II) Complex as an Anticancer Agent: Drug Release and Cytotoxicity Assessment
{"title":"A New Trend to Introduce a Biocompatible Drug Carrier Based on Immunoglobulin for Prolonged Release of Palladium (II) Complex as an Anticancer Agent: Drug Release and Cytotoxicity Assessment","authors":"Maryam Saeidifar, Hamid Reza Mirzaei, Ghazaleh Rahimi, Robert Macgregor, Seyed Mojtaba Daghighi","doi":"10.1002/aoc.70020","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Severe side effects and low chemotherapy efficacy remain challenges in cancer treatment. Therefore, this research is aimed at investigating a colloidal drug nanocarrier based on immunoglobulin nanoparticles (IgGNPs) for sustained release of an anticancer agent. A novel palladium (II) complex (PBD) loaded to IgGNPs and its formation (PBD@IgGNP) was characterized by FTIR, DLS, and AFM techniques. The size of designed system was 797 ± 121 nm, with a particle size distribution and surface charge greater than those of IgGNP indicating the conjugation of PBD and IgGNP. The release behavior indicated that 33.66% of PBD and 12.76% of encapsulated PBD in IgGNP were released at 579 h, while carboplatin was completely released at 216 h. The release mechanism followed Korsmeyer–Peppas model and non-Fickian law. Other kinetic parameters of the release are also presented. Furthermore, MTT assay showed that IC<sub>50</sub> values of PBD and PBD@IgGNP on breast cancer cells, 4T1, were 0.75 mM while 78% of the cells were viable at the same concentration of carboplatin. DAPI, AO/EB, and PCR staining indicated that the apoptotic induction of PBD@IgGNP was greater than PBD. Moreover, in vivo results confirmed the apoptotic induction and inhibition of tumor growth in the presence of PBD@IgGNP. These valuable achievements proposed a potential nanocarrier to increase the apoptotic induction and effectiveness of anticancer drugs and decrease their side effects.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"39 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.70020","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Severe side effects and low chemotherapy efficacy remain challenges in cancer treatment. Therefore, this research is aimed at investigating a colloidal drug nanocarrier based on immunoglobulin nanoparticles (IgGNPs) for sustained release of an anticancer agent. A novel palladium (II) complex (PBD) loaded to IgGNPs and its formation (PBD@IgGNP) was characterized by FTIR, DLS, and AFM techniques. The size of designed system was 797 ± 121 nm, with a particle size distribution and surface charge greater than those of IgGNP indicating the conjugation of PBD and IgGNP. The release behavior indicated that 33.66% of PBD and 12.76% of encapsulated PBD in IgGNP were released at 579 h, while carboplatin was completely released at 216 h. The release mechanism followed Korsmeyer–Peppas model and non-Fickian law. Other kinetic parameters of the release are also presented. Furthermore, MTT assay showed that IC50 values of PBD and PBD@IgGNP on breast cancer cells, 4T1, were 0.75 mM while 78% of the cells were viable at the same concentration of carboplatin. DAPI, AO/EB, and PCR staining indicated that the apoptotic induction of PBD@IgGNP was greater than PBD. Moreover, in vivo results confirmed the apoptotic induction and inhibition of tumor growth in the presence of PBD@IgGNP. These valuable achievements proposed a potential nanocarrier to increase the apoptotic induction and effectiveness of anticancer drugs and decrease their side effects.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.