Andres Lora Santos, Osama M. Tarabih, Mauricio E. Arias, Mark C. Rains, Qiong Zhang
{"title":"Effects of Future Land Use Variability on Nutrient Loads in a Fast-Urbanizing Landscape","authors":"Andres Lora Santos, Osama M. Tarabih, Mauricio E. Arias, Mark C. Rains, Qiong Zhang","doi":"10.1111/1752-1688.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Urbanization, driven by population growth, alters watershed hydrology and nutrient runoff. However, the complex interplay between urbanization and nutrients in regional watersheds remains an open question. This study assessed how urbanization affects streamflow, total nitrogen (TN), and total phosphorus (TP) loads in six diverse Florida watersheds covering an area of 10,600 km<sup>2</sup>. This was carried out by introducing 2070 land use/land cover (LULC) projections to a watershed hydrology/water quality model. We investigated how different levels of urban density, as a proxy for urbanization patterns, affect streamflow and nutrient variability. Results indicate that urban land could increase from 14% to 27% in 2070. This expansion could lead to monthly streamflow increases of 0%–36%, based on watershed and urbanization patterns. Future TP loads could change by −8% to +140%, with decreases attributed to LULC transitions from high-use fertilizer agriculture to low/medium density residential classes. Projected TN loads are more consistent, with simulated changes of −1% to +26%. Among LULC transitions, the largest increases in TP and TN are caused by potential urbanization of freshwater wetlands. This study provides knowledge relevant to regions undergoing similar urbanization trends, enabling managers to make better land development plans with water quality considerations. It also contributes a detailed modeling framework that can be adopted even with the use of different LULC datasets and software.</p>\n </div>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.70009","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Urbanization, driven by population growth, alters watershed hydrology and nutrient runoff. However, the complex interplay between urbanization and nutrients in regional watersheds remains an open question. This study assessed how urbanization affects streamflow, total nitrogen (TN), and total phosphorus (TP) loads in six diverse Florida watersheds covering an area of 10,600 km2. This was carried out by introducing 2070 land use/land cover (LULC) projections to a watershed hydrology/water quality model. We investigated how different levels of urban density, as a proxy for urbanization patterns, affect streamflow and nutrient variability. Results indicate that urban land could increase from 14% to 27% in 2070. This expansion could lead to monthly streamflow increases of 0%–36%, based on watershed and urbanization patterns. Future TP loads could change by −8% to +140%, with decreases attributed to LULC transitions from high-use fertilizer agriculture to low/medium density residential classes. Projected TN loads are more consistent, with simulated changes of −1% to +26%. Among LULC transitions, the largest increases in TP and TN are caused by potential urbanization of freshwater wetlands. This study provides knowledge relevant to regions undergoing similar urbanization trends, enabling managers to make better land development plans with water quality considerations. It also contributes a detailed modeling framework that can be adopted even with the use of different LULC datasets and software.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.