A Multi-Stage Security Constrained Coordinated Expansion Planning of Transmission System and Energy Hubs

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sajad Davtalab, Behrouz Tousi, Yousef Allahvirdizadeh
{"title":"A Multi-Stage Security Constrained Coordinated Expansion Planning of Transmission System and Energy Hubs","authors":"Sajad Davtalab,&nbsp;Behrouz Tousi,&nbsp;Yousef Allahvirdizadeh","doi":"10.1049/gtd2.70029","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a security constrained coordinated decision-making process for optimal long-term and short-term scheduling of the transmission system (TS) and energy hubs (EHs). Energy users (EUs) across the transmission system (TS) minimize their energy costs by investing in the EHs. A three-level approach using the diagonalization algorithm is employed to evaluate the benefits of cooperation between the transmission system operator (TSO) and energy users (EUs). The proposed framework is modeled using both static and multi-stage optimization approaches to minimize the total costs of the planning, operation, emission, and expected energy not served (EENS) simultaneously for the TSO and EUs at the first and second levels, respectively. The TSO expansion planning is optimized at the first level to meet the TS capacity requirements. At the second level, the EUs at different nodes invest in the EHs based on the calculated locational marginal prices (LMPs). Once the expansion planning of the EUs is optimized, the net electrical demands at the TS nodes are updated. Then, the electrical market is cleared by the independent system operator (ISO) at the third level to update the LMPs. Finally, the strategical expansion planning of the TSO is updated at the first level.</p><p>The security of the TS and EHs is modeled considering the possibility of failure occurrence in the TS lines and energy sources in the EHs. The output power of the renewable energy resources (RESs), multi-carrier load demands, district market prices, operation cost of the thermal units, and equipment availability have uncertain nature. These uncertainties are applied to the proposed framework by a stochastic optimization framework. For evaluating the performance of the proposed model, it is implemented on the modified IEEE 30 bus and 118 bus test systems, considering a common model of the EH, consisting of photovoltaic panels (PVs), wind turbines (WTs), combined heat and power generation (CHP) units boilers, and absorption chillers. Numerical results indicate that the proposed method significantly reduces EENS and overall system costs under both static and multi-stage approaches, demonstrating its effectiveness.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a security constrained coordinated decision-making process for optimal long-term and short-term scheduling of the transmission system (TS) and energy hubs (EHs). Energy users (EUs) across the transmission system (TS) minimize their energy costs by investing in the EHs. A three-level approach using the diagonalization algorithm is employed to evaluate the benefits of cooperation between the transmission system operator (TSO) and energy users (EUs). The proposed framework is modeled using both static and multi-stage optimization approaches to minimize the total costs of the planning, operation, emission, and expected energy not served (EENS) simultaneously for the TSO and EUs at the first and second levels, respectively. The TSO expansion planning is optimized at the first level to meet the TS capacity requirements. At the second level, the EUs at different nodes invest in the EHs based on the calculated locational marginal prices (LMPs). Once the expansion planning of the EUs is optimized, the net electrical demands at the TS nodes are updated. Then, the electrical market is cleared by the independent system operator (ISO) at the third level to update the LMPs. Finally, the strategical expansion planning of the TSO is updated at the first level.

The security of the TS and EHs is modeled considering the possibility of failure occurrence in the TS lines and energy sources in the EHs. The output power of the renewable energy resources (RESs), multi-carrier load demands, district market prices, operation cost of the thermal units, and equipment availability have uncertain nature. These uncertainties are applied to the proposed framework by a stochastic optimization framework. For evaluating the performance of the proposed model, it is implemented on the modified IEEE 30 bus and 118 bus test systems, considering a common model of the EH, consisting of photovoltaic panels (PVs), wind turbines (WTs), combined heat and power generation (CHP) units boilers, and absorption chillers. Numerical results indicate that the proposed method significantly reduces EENS and overall system costs under both static and multi-stage approaches, demonstrating its effectiveness.

Abstract Image

输电系统与能源枢纽多阶段安全约束协调扩展规划
提出了输电系统和能源枢纽长期和短期最优调度的安全约束协调决策过程。整个输电系统(TS)的能源用户(eu)通过投资EHs来降低能源成本。采用对角化算法的三层次方法来评估输电系统运营商(TSO)和能源用户(EUs)之间的合作效益。所提出的框架采用静态和多阶段优化方法建模,以最小化TSO和eu分别在第一和第二级的规划、运行、排放和预期未服务能源(EENS)的总成本。在第一级优化了TSO扩容规划,以满足TS的容量需求。在第二层,不同节点的EUs根据计算出的区位边际价格(LMPs)对EHs进行投资。一旦对扩容规划进行优化,即可更新TS节点的净电需求。然后,电力市场由第三层的独立系统运营商(ISO)清算,以更新lmp。最后,在第一级更新了TSO的战略扩展规划。考虑输电线线路和输电线中能源发生故障的可能性,对输电线和输电线的安全性进行了建模。可再生能源输出功率、多载波负荷需求、区域市场价格、热电机组运行成本和设备可用性具有不确定性。这些不确定性通过随机优化框架应用到所提出的框架中。为了评估所提出的模型的性能,在改进的IEEE 30总线和118总线测试系统上实施了该模型,考虑了由光伏板(pv)、风力涡轮机(WTs)、热电联产(CHP)机组、锅炉和吸收式制冷机组成的EH的通用模型。数值结果表明,该方法在静态和多阶段方法下均能显著降低EENS和系统总成本,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信