Motor Imagery Classification Using fNIRS Brain Signals: A Method Based on Synthetic Data Augmentation and Cosine-Modulated Attention

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Cheng Peng, Baojiang Li, Haiyan Wang, Xinbing Shi, Yuxing Qin
{"title":"Motor Imagery Classification Using fNIRS Brain Signals: A Method Based on Synthetic Data Augmentation and Cosine-Modulated Attention","authors":"Cheng Peng,&nbsp;Baojiang Li,&nbsp;Haiyan Wang,&nbsp;Xinbing Shi,&nbsp;Yuxing Qin","doi":"10.1111/coin.70044","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Functional near-infrared spectroscopy (fNIRS), renowned for its high spatial resolution, shows substantial promise in brain-computer interface (BCI) applications. However, challenges such as lengthy data acquisition processes and susceptibility to noise can limit data availability and reduce classification accuracy. To overcome these limitations, we introduce the CosineGAN-transformer network (CGTNet), which integrates a dual discriminator GAN for generating high-quality synthetic data with a Transformer-based classification network. Equipped with a multi-head self-attention mechanism, this network excels at capturing the intricate spatiotemporal relationships inherent in high-resolution fNIRS signals. The dual discriminator framework ensures that both the temporal and spatial aspects of the synthetic data closely resemble the original signals, thereby enhancing data diversity and fidelity. Experimental results on a publicly available fNIRS dataset, comprising 30 participants performing motor imagery tasks (right-hand tapping, left-hand tapping, and foot tapping), demonstrate that CGTNet achieves an accuracy of 82.67%, outperforming existing methods. Key contributions of this work include the use of multi-head self-attention for refined feature extraction and a dual discriminator Generative Adversarial Networks (GAN) framework that maintains data quality and consistency. These advancements significantly improve the robustness and accuracy of BCI systems, offering promising applications in neurorehabilitation and assistive technologies.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70044","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Functional near-infrared spectroscopy (fNIRS), renowned for its high spatial resolution, shows substantial promise in brain-computer interface (BCI) applications. However, challenges such as lengthy data acquisition processes and susceptibility to noise can limit data availability and reduce classification accuracy. To overcome these limitations, we introduce the CosineGAN-transformer network (CGTNet), which integrates a dual discriminator GAN for generating high-quality synthetic data with a Transformer-based classification network. Equipped with a multi-head self-attention mechanism, this network excels at capturing the intricate spatiotemporal relationships inherent in high-resolution fNIRS signals. The dual discriminator framework ensures that both the temporal and spatial aspects of the synthetic data closely resemble the original signals, thereby enhancing data diversity and fidelity. Experimental results on a publicly available fNIRS dataset, comprising 30 participants performing motor imagery tasks (right-hand tapping, left-hand tapping, and foot tapping), demonstrate that CGTNet achieves an accuracy of 82.67%, outperforming existing methods. Key contributions of this work include the use of multi-head self-attention for refined feature extraction and a dual discriminator Generative Adversarial Networks (GAN) framework that maintains data quality and consistency. These advancements significantly improve the robustness and accuracy of BCI systems, offering promising applications in neurorehabilitation and assistive technologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信