A presentation of the torus-equivariant quantum K $K$ -theory ring of flag manifolds of type A $A$ , Part I: The defining ideal

IF 1 2区 数学 Q1 MATHEMATICS
Toshiaki Maeno, Satoshi Naito, Daisuke Sagaki
{"title":"A presentation of the torus-equivariant quantum \n \n K\n $K$\n -theory ring of flag manifolds of type \n \n A\n $A$\n , Part I: The defining ideal","authors":"Toshiaki Maeno,&nbsp;Satoshi Naito,&nbsp;Daisuke Sagaki","doi":"10.1112/jlms.70095","DOIUrl":null,"url":null,"abstract":"<p>We give a presentation of the torus-equivariant (small) quantum <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory ring of flag manifolds of type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>, as the quotient of a polynomial ring by an explicit ideal. This result is the torus-equivariant version of our previous one, which gives a presentation of the nonequivariant quantum <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory ring of flag manifolds of type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>. However, the method of proof for the torus-equivariant one is entirely different from that for the nonequivariant one; our proof is based on the result in the <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$Q = 0$</annotation>\n </semantics></math> limit, and uses Nakayama-type arguments to upgrade it to the quantum situation. Also, in contrast to the nonequivariant case in which we used the Chevalley formula, we make use of the inverse Chevalley formula for the torus-equivariant <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-group of semi-infinite flag manifolds to obtain relations that yield our presentation.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70095","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a presentation of the torus-equivariant (small) quantum K $K$ -theory ring of flag manifolds of type A $A$ , as the quotient of a polynomial ring by an explicit ideal. This result is the torus-equivariant version of our previous one, which gives a presentation of the nonequivariant quantum K $K$ -theory ring of flag manifolds of type A $A$ . However, the method of proof for the torus-equivariant one is entirely different from that for the nonequivariant one; our proof is based on the result in the Q = 0 $Q = 0$ limit, and uses Nakayama-type arguments to upgrade it to the quantum situation. Also, in contrast to the nonequivariant case in which we used the Chevalley formula, we make use of the inverse Chevalley formula for the torus-equivariant K $K$ -group of semi-infinite flag manifolds to obtain relations that yield our presentation.

A$ A$型标志流形的环面等变量子K$ K$理论环,第1部分:定义理想
给出了a $ a $型标志流形的环面等变(小)量子K$ K$理论环作为多项式环的商的一个显式理想。这个结果是我们前一个结果的环面等变版本,它给出了a $ a $型标志流形的非等变量子K$ K$理论环。然而,环面等变的证明方法与非等变的证明方法是完全不同的;我们的证明基于Q = 0$ Q = 0$极限的结果,并使用nakayama型参数将其升级到量子情况。此外,与我们使用Chevalley公式的非等变情况相反,我们使用环面等变的半无限标志流形K$ K$群的逆Chevalley公式来获得产生我们的表述的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信