Renato Zea Vintimilla, Kevin Drenkhahn, Christoph Wagner, Mario Lorenz, Markus Landmann, Giovanni del Galdo
{"title":"Emulation of Realistic GNSS Scenarios Over 3D Wave Field Synthesis and Over-The-Air Testing","authors":"Renato Zea Vintimilla, Kevin Drenkhahn, Christoph Wagner, Mario Lorenz, Markus Landmann, Giovanni del Galdo","doi":"10.1049/mia2.70009","DOIUrl":null,"url":null,"abstract":"<p>Over-the-air (OTA) tests have become an essential tool to assess the performance of a wireless device under controllable and repeatable conditions. Such benefits provide a deep insight into the device under test (DUT) performance; nevertheless, the realism achieved by OTA tests is still moderate in comparison to open-field tests. This contribution takes the OTA testing method for wireless devices and combines it with the wave field synthesis (WFS) technique to increase the efficiency, reliability and especially the realism of the tests. The main focus of this contribution is to use the aforementioned method to emulate realistic GNSS scenarios inside an anechoic chamber, where multiple virtual satellite signals are electronically generated in the far field along with their individual trajectories. For the validation and verification of the method, a commercial GNSS antenna and receiver are placed as the DUT inside the chamber. The WFS calibration methods implemented in an OTA testbed are described in detail along with the performance analysis obtained by each method. This study strives to establish the foundation for a forthcoming standardisation of the proposed methodology, applicable not only to GNSS devices but also to any variety of wireless devices.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"19 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.70009","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Over-the-air (OTA) tests have become an essential tool to assess the performance of a wireless device under controllable and repeatable conditions. Such benefits provide a deep insight into the device under test (DUT) performance; nevertheless, the realism achieved by OTA tests is still moderate in comparison to open-field tests. This contribution takes the OTA testing method for wireless devices and combines it with the wave field synthesis (WFS) technique to increase the efficiency, reliability and especially the realism of the tests. The main focus of this contribution is to use the aforementioned method to emulate realistic GNSS scenarios inside an anechoic chamber, where multiple virtual satellite signals are electronically generated in the far field along with their individual trajectories. For the validation and verification of the method, a commercial GNSS antenna and receiver are placed as the DUT inside the chamber. The WFS calibration methods implemented in an OTA testbed are described in detail along with the performance analysis obtained by each method. This study strives to establish the foundation for a forthcoming standardisation of the proposed methodology, applicable not only to GNSS devices but also to any variety of wireless devices.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf