Costanza Tedesco, Angelica Simbula, Riccardo Pau, Francesca Merlo, Andrea Speltini, Vincenza Armenise, Andrea Listorti, Luca Gregori, Asma A. Alothman, Edoardo Mosconi, Michele Saba, Antonella Profumo, Lorenzo Malavasi
{"title":"Compositional and Defect Engineering of Metal Halide Perovskite-Based Heterojunctions for Efficient Nitrogen Photofixation","authors":"Costanza Tedesco, Angelica Simbula, Riccardo Pau, Francesca Merlo, Andrea Speltini, Vincenza Armenise, Andrea Listorti, Luca Gregori, Asma A. Alothman, Edoardo Mosconi, Michele Saba, Antonella Profumo, Lorenzo Malavasi","doi":"10.1002/solr.202400778","DOIUrl":null,"url":null,"abstract":"<p>Designing innovative photocatalysts for nitrogen photofixation is becoming crucial for the development of carbon-neutral ammonia production. Metal halide perovskites (MHPs) provide a rich library of materials with an easy tuning of the semiconductor bandgap in order to integrate them in devices with different functionalities. An under-explored path is their exploitation to run a wide range of photoredox reactions mediated by solar light. Herein, heterojunction is developed based on the vacancy-ordered double-perovskite Cs<sub>2</sub>SnBr<sub>6</sub> and carbon nitride nanosheets and demonstrate its ability in running the nitrogen photofixation reaction to produce ammonia under solar light. An investigation is done on full Cs<sub>2</sub>SnBr<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> system and an optimal range providing an outstanding ammonia evolution rate up to 270 μmol g<sup>−1</sup> h<sup>−1</sup>is identified, which is quantified by means of ion selective electrode. Mechanistic insight into the photofixation reaction is obtained through a combination of advanced spectroscopy and computational modeling. Efficient ammonia production stems from an effective charge transfer from the perovskite to the nitrogen vacancies on the carbon nitride enabled by the proposed absence of self-trapped excitons in Cs<sub>2</sub>SnBr<sub>6</sub>, which also provides additional reactive sites through bromide vacancies. This work paves the way to MHP-based catalyst design strategy for sustainable ammonia production.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 6","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400778","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400778","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Designing innovative photocatalysts for nitrogen photofixation is becoming crucial for the development of carbon-neutral ammonia production. Metal halide perovskites (MHPs) provide a rich library of materials with an easy tuning of the semiconductor bandgap in order to integrate them in devices with different functionalities. An under-explored path is their exploitation to run a wide range of photoredox reactions mediated by solar light. Herein, heterojunction is developed based on the vacancy-ordered double-perovskite Cs2SnBr6 and carbon nitride nanosheets and demonstrate its ability in running the nitrogen photofixation reaction to produce ammonia under solar light. An investigation is done on full Cs2SnBr6/g-C3N4 system and an optimal range providing an outstanding ammonia evolution rate up to 270 μmol g−1 h−1is identified, which is quantified by means of ion selective electrode. Mechanistic insight into the photofixation reaction is obtained through a combination of advanced spectroscopy and computational modeling. Efficient ammonia production stems from an effective charge transfer from the perovskite to the nitrogen vacancies on the carbon nitride enabled by the proposed absence of self-trapped excitons in Cs2SnBr6, which also provides additional reactive sites through bromide vacancies. This work paves the way to MHP-based catalyst design strategy for sustainable ammonia production.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.