Cardiac Tissue Engineering Using Stimuli-Responsive Biomaterials for the Targeted Therapy of Myocardial Infarction

Zarin Tasnim Tisha, Kazi Tasnuva Alam, Tanvir Ahmed
{"title":"Cardiac Tissue Engineering Using Stimuli-Responsive Biomaterials for the Targeted Therapy of Myocardial Infarction","authors":"Zarin Tasnim Tisha,&nbsp;Kazi Tasnuva Alam,&nbsp;Tanvir Ahmed","doi":"10.1002/mba2.70009","DOIUrl":null,"url":null,"abstract":"<p>Cardiac tissue engineering presents a viable strategy for the targeted therapy of myocardial infarction (MI), overcoming the limitations of existing therapies in cardiac repair and regeneration. This review explores the potential of stimuli-responsive biomaterials that engage with the cardiac environment by reacting to various environmental stimuli including pH, temperature, enzymes, ultrasound, and reactive oxygen species. These materials enable precise drug delivery, modulate cellular responses, and enhance tissue regeneration. Biomaterials such as hydrogels, polymers, chitosan, collagen, and alginate improve the accuracy and effectiveness of targeted and localized delivery of drugs, stem cells, and growth factors, thus improving the precision and efficacy of treatments. The review looks at the ability of these biomaterials to mimic the complex biochemical and mechanical cues of a healthy myocardium. The challenges and prospects of clinical applications for stimuli-responsive biomaterials are discussed, highlighting their transformative potential in targeted cardiac therapy while improving outcomes for patients with MI.</p>","PeriodicalId":100901,"journal":{"name":"MedComm – Biomaterials and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Biomaterials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mba2.70009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac tissue engineering presents a viable strategy for the targeted therapy of myocardial infarction (MI), overcoming the limitations of existing therapies in cardiac repair and regeneration. This review explores the potential of stimuli-responsive biomaterials that engage with the cardiac environment by reacting to various environmental stimuli including pH, temperature, enzymes, ultrasound, and reactive oxygen species. These materials enable precise drug delivery, modulate cellular responses, and enhance tissue regeneration. Biomaterials such as hydrogels, polymers, chitosan, collagen, and alginate improve the accuracy and effectiveness of targeted and localized delivery of drugs, stem cells, and growth factors, thus improving the precision and efficacy of treatments. The review looks at the ability of these biomaterials to mimic the complex biochemical and mechanical cues of a healthy myocardium. The challenges and prospects of clinical applications for stimuli-responsive biomaterials are discussed, highlighting their transformative potential in targeted cardiac therapy while improving outcomes for patients with MI.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信