Fan Wang, Jie Mu, Cheng Zhang, Weiqi Wang, Wuxia Bi, Wenqing Lin, Dawei Zhang
{"title":"Deep Learning Model for Real-Time Flood Forecasting in Fast-Flowing Watershed","authors":"Fan Wang, Jie Mu, Cheng Zhang, Weiqi Wang, Wuxia Bi, Wenqing Lin, Dawei Zhang","doi":"10.1111/jfr3.70036","DOIUrl":null,"url":null,"abstract":"<p>The fast-flowing watershed is characterized by rapid runoff and confluence, posing challenges for accurate flood prediction. We introduce three flood forecasting model structures, namely GRU-ED, LSTM-FED, and LSTM-DSA to address this issue. Through application research in three representative watersheds, we found that: First, as input information attenuates, the predictive ability of the models may decline with an extended lead time. The incorporation of a feedback mechanism effectively addresses this issue, resulting in an average 5% improvement in Nash efficiency and a significant 26.4% reduction in the interquartile range of relative peak error. Second, the performance of the model is influenced by various factors, including the watershed characteristics, sample size, and temporal resolution. Further investigation is required to determine the extent of their influence. The attention mechanism dynamically assigns weights to input data, significantly improving model performance, especially for larger catchments. This leads to an average increase in Nash efficiency of approximately 7.86% and a reduction in the interquartile range of relative peak error by about 30.7%. Finally, the proposed models demonstrate a high level of accuracy in flood forecasting within a specific lead time, offering an innovative deep learning-based solution to the problem of fast-flowing watershed flood forecasting.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70036","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The fast-flowing watershed is characterized by rapid runoff and confluence, posing challenges for accurate flood prediction. We introduce three flood forecasting model structures, namely GRU-ED, LSTM-FED, and LSTM-DSA to address this issue. Through application research in three representative watersheds, we found that: First, as input information attenuates, the predictive ability of the models may decline with an extended lead time. The incorporation of a feedback mechanism effectively addresses this issue, resulting in an average 5% improvement in Nash efficiency and a significant 26.4% reduction in the interquartile range of relative peak error. Second, the performance of the model is influenced by various factors, including the watershed characteristics, sample size, and temporal resolution. Further investigation is required to determine the extent of their influence. The attention mechanism dynamically assigns weights to input data, significantly improving model performance, especially for larger catchments. This leads to an average increase in Nash efficiency of approximately 7.86% and a reduction in the interquartile range of relative peak error by about 30.7%. Finally, the proposed models demonstrate a high level of accuracy in flood forecasting within a specific lead time, offering an innovative deep learning-based solution to the problem of fast-flowing watershed flood forecasting.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.