V. Thirunavukkarasu, A. Senthil Kumar, G. Suresh, K. Suganyadevi
{"title":"Securing 5G Wireless Networks With Advanced Key Management and Authentication for Enhanced Data Protection","authors":"V. Thirunavukkarasu, A. Senthil Kumar, G. Suresh, K. Suganyadevi","doi":"10.1002/dac.70070","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The deployment of 5G technology marks a significant milestone in wireless communication, offering unparalleled speed, low latency, and the capacity to connect billions of devices through the Internet of Things (IoT). However, these advancements introduce considerable security challenges due to the increased complexity and scale of 5G networks, as well as the growing threat landscape. This paper introduces a novel security framework for 5G networks, addressing these challenges with innovative cryptographic and authentication solutions. By integrating elliptic curve cryptography (ECC) with quantum-resistant algorithms, the framework ensures secure key management that is future-proof against emerging threats, including those posed by quantum computing. Furthermore, the hybrid multifactor authentication system, encompassing biometric verification, one-time passwords (OTPs), and mutual authentication, provides a robust defense mechanism against unauthorized access and identity spoofing. Simulation results using NS3 demonstrate the model's superior performance, achieving 99.5% accuracy and low latency of 200 ms, surpassing traditional methods in both security and efficiency. The framework is further designed to withstand common cyberattacks, including man-in-the-middle and replay attacks, ensuring robust protection for critical applications like IoT ecosystems, autonomous vehicles, and smart cities. This comprehensive approach not only enhances data protection and network security but also ensures scalability, adaptability, and energy efficiency, positioning the framework as a critical solution for next-generation communication systems and beyond.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 7","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.70070","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The deployment of 5G technology marks a significant milestone in wireless communication, offering unparalleled speed, low latency, and the capacity to connect billions of devices through the Internet of Things (IoT). However, these advancements introduce considerable security challenges due to the increased complexity and scale of 5G networks, as well as the growing threat landscape. This paper introduces a novel security framework for 5G networks, addressing these challenges with innovative cryptographic and authentication solutions. By integrating elliptic curve cryptography (ECC) with quantum-resistant algorithms, the framework ensures secure key management that is future-proof against emerging threats, including those posed by quantum computing. Furthermore, the hybrid multifactor authentication system, encompassing biometric verification, one-time passwords (OTPs), and mutual authentication, provides a robust defense mechanism against unauthorized access and identity spoofing. Simulation results using NS3 demonstrate the model's superior performance, achieving 99.5% accuracy and low latency of 200 ms, surpassing traditional methods in both security and efficiency. The framework is further designed to withstand common cyberattacks, including man-in-the-middle and replay attacks, ensuring robust protection for critical applications like IoT ecosystems, autonomous vehicles, and smart cities. This comprehensive approach not only enhances data protection and network security but also ensures scalability, adaptability, and energy efficiency, positioning the framework as a critical solution for next-generation communication systems and beyond.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.