Effects of Urbanization and Climate Change on Heat Stress Under Relatively Dry and Wet Warm Conditions in a Semi-Arid Urban Environment

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2025-03-19 DOI:10.1029/2024EF004983
Francisco Salamanca-Palou, Gisel Guzman-Echavarría, Jennifer Vanos, Pope Moseley, Marisa Elena Domino, Matei Georgescu
{"title":"Effects of Urbanization and Climate Change on Heat Stress Under Relatively Dry and Wet Warm Conditions in a Semi-Arid Urban Environment","authors":"Francisco Salamanca-Palou,&nbsp;Gisel Guzman-Echavarría,&nbsp;Jennifer Vanos,&nbsp;Pope Moseley,&nbsp;Marisa Elena Domino,&nbsp;Matei Georgescu","doi":"10.1029/2024EF004983","DOIUrl":null,"url":null,"abstract":"<p>This article investigates the effect of urban expansion and climate change impacts on heat stress (HS) for Arizona's (AZ; USA) two largest urban agglomerations, the Phoenix and Tucson metropolitan areas, under relatively dry and moist warm conditions with the Weather Research and Forecasting (WRF)-urban modeling system. We dynamically downscale two contemporary summers, one dry and one moist, relatively to their respective seasonal-mean specific humidity across AZ. Urban expansion impacts on HS are assessed by performing two identical simulations for each contemporary summer using different land use-land cover representations: one simulation with the current urban landscape, and one simulation replaces the urban cover with the region's most representative MODIS vegetation type. Climate change impacts on HS are evaluated by performing four additional future simulations, two via dynamical downscaling of relatively dry conditions (one summer under the RCP8.5 and one summer under the RCP4.5 emissions pathways) and two of relatively moist conditions (one summer for each RCP pathway). The selection of future summers is based on their respective seasonal-mean specific humidity across AZ from an end-of-century analysis of 2086–2100. We characterize impacts on HS by examining changes in near-surface air temperature, Heat Index (HI), and the Universal Thermal Climate Index (UTCI) across urban areas under dry and moist warm conditions. Our results demonstrate that climate change impacts on HS are not well captured by examining only the projected changes in air temperature and are dependent on the bioclimate index considered. Additionally, we apply a new human heat balance (HHB) approach to evaluate the number of hours per day that an acclimatized and non-acclimatized person would experience uncompensable HS and compare these results (with the number of hours per day) that we obtain when the HI and UTCI surpass commonly used thresholds considered “dangerous” and of “extreme heat stress”, respectively. The HI and UTCI overestimate the number of hours per day that a healthy, acclimatized person would experience uncompensable HS and underestimate dangerous HS for a non-acclimatized person under both dry and moist conditions, emphasizing that standard metrics may not produce the most informative physiological estimates of HS.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 3","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004983","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004983","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the effect of urban expansion and climate change impacts on heat stress (HS) for Arizona's (AZ; USA) two largest urban agglomerations, the Phoenix and Tucson metropolitan areas, under relatively dry and moist warm conditions with the Weather Research and Forecasting (WRF)-urban modeling system. We dynamically downscale two contemporary summers, one dry and one moist, relatively to their respective seasonal-mean specific humidity across AZ. Urban expansion impacts on HS are assessed by performing two identical simulations for each contemporary summer using different land use-land cover representations: one simulation with the current urban landscape, and one simulation replaces the urban cover with the region's most representative MODIS vegetation type. Climate change impacts on HS are evaluated by performing four additional future simulations, two via dynamical downscaling of relatively dry conditions (one summer under the RCP8.5 and one summer under the RCP4.5 emissions pathways) and two of relatively moist conditions (one summer for each RCP pathway). The selection of future summers is based on their respective seasonal-mean specific humidity across AZ from an end-of-century analysis of 2086–2100. We characterize impacts on HS by examining changes in near-surface air temperature, Heat Index (HI), and the Universal Thermal Climate Index (UTCI) across urban areas under dry and moist warm conditions. Our results demonstrate that climate change impacts on HS are not well captured by examining only the projected changes in air temperature and are dependent on the bioclimate index considered. Additionally, we apply a new human heat balance (HHB) approach to evaluate the number of hours per day that an acclimatized and non-acclimatized person would experience uncompensable HS and compare these results (with the number of hours per day) that we obtain when the HI and UTCI surpass commonly used thresholds considered “dangerous” and of “extreme heat stress”, respectively. The HI and UTCI overestimate the number of hours per day that a healthy, acclimatized person would experience uncompensable HS and underestimate dangerous HS for a non-acclimatized person under both dry and moist conditions, emphasizing that standard metrics may not produce the most informative physiological estimates of HS.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信