Enhancement of Phosphoric Acid-Functionalized Graphene Oxide on SPEEK Membrane Performance

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Juan Li, Jiang Liu, Shuai Wang, Yao Xu
{"title":"Enhancement of Phosphoric Acid-Functionalized Graphene Oxide on SPEEK Membrane Performance","authors":"Juan Li,&nbsp;Jiang Liu,&nbsp;Shuai Wang,&nbsp;Yao Xu","doi":"10.1002/app.56804","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Sulfonated poly ether ether ketone (SPEEK) membrane has a great potential in the application of proton exchange membrane fuel cells owing to low cost. However, it suffers from limited proton conductivity. In this paper, quantum chemistry calculation and molecular dynamics simulation are employed to reveal the enhancing mechanism of phosphoric acid-functionalized graphene oxide (GO) on proton conduction in the SPEEK membrane. The results reveal that the strong interaction between sulfonic acid group and phosphoric acid group leads to the dissociation of proton and the proton transfer pathway with a low energy barrier is formed. Meanwhile, it is found that the phosphoric acid-functionalized GO can interact well with water molecule and membrane matrix so as to promote the transport of water molecules in the membrane.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 17","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56804","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfonated poly ether ether ketone (SPEEK) membrane has a great potential in the application of proton exchange membrane fuel cells owing to low cost. However, it suffers from limited proton conductivity. In this paper, quantum chemistry calculation and molecular dynamics simulation are employed to reveal the enhancing mechanism of phosphoric acid-functionalized graphene oxide (GO) on proton conduction in the SPEEK membrane. The results reveal that the strong interaction between sulfonic acid group and phosphoric acid group leads to the dissociation of proton and the proton transfer pathway with a low energy barrier is formed. Meanwhile, it is found that the phosphoric acid-functionalized GO can interact well with water molecule and membrane matrix so as to promote the transport of water molecules in the membrane.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信