Enhanced bio-reduction of Cr(VI) using Shewanella putrefaciens CN32 mediated by Fe(III) minerals and riboflavin synergistically

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tianle Zhang, Haibo Li, Yichen Wu, Yajue Yuan, Yu Du
{"title":"Enhanced bio-reduction of Cr(VI) using Shewanella putrefaciens CN32 mediated by Fe(III) minerals and riboflavin synergistically","authors":"Tianle Zhang,&nbsp;Haibo Li,&nbsp;Yichen Wu,&nbsp;Yajue Yuan,&nbsp;Yu Du","doi":"10.1007/s10532-025-10120-w","DOIUrl":null,"url":null,"abstract":"<div><p>Iron minerals and the coupling of electron shuttle media can effectively overcome the problem of the insolubility of iron minerals and the higher cross-medium resistance consequently to enhance the bio-reduction rate of Cr(VI) by dissimilatory metal-reducing bacteria (DMRB). This study explored the potential synergistic enhancement of Cr(VI) bio-reduction by <i>Shewanella putrefaciens</i> CN32 in combination with three iron minerals (ferrihydrite, goethite and hematite) and riboflavin (RF). The addition of RF accelerates the transfer of electrons from bacterial cells to Fe minerals, which in turn promotes the production of large amounts of Fe(II). The results indicated that compared to the control group, the Cr(VI) reduction rates in the CN32/RF/hematite, goethite, ferrihydrite systems increased to 93.03%, 91.07%, and 86.83%, hematite was capable of generating 2.24 mM Fe(II) due to its stable structure and efficient synergy with riboflavin. Enhancement factor(EF) was used to quantify the synergistic effect of RF and iron minerals on the bio-reduction of Cr(VI). At all three reaction times, the F<sub>EF</sub> (K<sub>CN32+RF+Fe</sub>/K<sub>CN32</sub>) of three Fe(III) minerals were all greater than 1. XPS analysis revealed that the primary reduction products of Cr(VI) were identified as Cr(CH<sub>3</sub>C(O)CHC(O)CH<sub>3</sub>)<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub> and Fe(II)-Cr(III) hydroxide, were predominantly deposited on both bacterial and mineral surfaces, thereby influencing their synergistic interactions. This study unveiled the dynamic synergistic mechanism changes of Cr(VI) reduction in different iron minerals environment,which offers new ideas for the remediation of Cr(VI) pollution.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10120-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Iron minerals and the coupling of electron shuttle media can effectively overcome the problem of the insolubility of iron minerals and the higher cross-medium resistance consequently to enhance the bio-reduction rate of Cr(VI) by dissimilatory metal-reducing bacteria (DMRB). This study explored the potential synergistic enhancement of Cr(VI) bio-reduction by Shewanella putrefaciens CN32 in combination with three iron minerals (ferrihydrite, goethite and hematite) and riboflavin (RF). The addition of RF accelerates the transfer of electrons from bacterial cells to Fe minerals, which in turn promotes the production of large amounts of Fe(II). The results indicated that compared to the control group, the Cr(VI) reduction rates in the CN32/RF/hematite, goethite, ferrihydrite systems increased to 93.03%, 91.07%, and 86.83%, hematite was capable of generating 2.24 mM Fe(II) due to its stable structure and efficient synergy with riboflavin. Enhancement factor(EF) was used to quantify the synergistic effect of RF and iron minerals on the bio-reduction of Cr(VI). At all three reaction times, the FEF (KCN32+RF+Fe/KCN32) of three Fe(III) minerals were all greater than 1. XPS analysis revealed that the primary reduction products of Cr(VI) were identified as Cr(CH3C(O)CHC(O)CH3)3, Cr2O3 and Fe(II)-Cr(III) hydroxide, were predominantly deposited on both bacterial and mineral surfaces, thereby influencing their synergistic interactions. This study unveiled the dynamic synergistic mechanism changes of Cr(VI) reduction in different iron minerals environment,which offers new ideas for the remediation of Cr(VI) pollution.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信