Saba Ghassemi, Seyed Saeid Ekraminia, Masoud Hajialilue-Bonab, Hamid Reza Tohidvand, Mohammad Azarafza, Reza Derakhshani
{"title":"Innovative insights into micropile seismic response: Shaking table tests reveal critical dependencies and liquefaction mitigation","authors":"Saba Ghassemi, Seyed Saeid Ekraminia, Masoud Hajialilue-Bonab, Hamid Reza Tohidvand, Mohammad Azarafza, Reza Derakhshani","doi":"10.1007/s10064-025-04225-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel investigation into the seismic response of micropiles through shaking table tests, diverging from the predominant reliance on numerical analyses in assessing micropiles in liquefiable sites. Three models of shaking table tests were conducted using Iai scaling rules for physical modelling in 1-g conditions. The investigation reveals a significant dependency of micropile efficiency on the frequency of input motions. During the 2 Hz test, the entire model experienced liquefaction; however, in the 3 Hz test, there was a remarkable 29% reduction in excess pore water pressure. Additionally, the study explores the impacts of varying distances between micropiles and examines how liquefaction influences the induced peak accelerations at different depths within the soil media. Notably, recorded accelerations on the surface decreased by up to 76% in the free field tests during liquefaction. This comprehensive exploration advances our understanding of micropile behaviour under seismic conditions, offering valuable insights for soil improvement projects.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-025-04225-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04225-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel investigation into the seismic response of micropiles through shaking table tests, diverging from the predominant reliance on numerical analyses in assessing micropiles in liquefiable sites. Three models of shaking table tests were conducted using Iai scaling rules for physical modelling in 1-g conditions. The investigation reveals a significant dependency of micropile efficiency on the frequency of input motions. During the 2 Hz test, the entire model experienced liquefaction; however, in the 3 Hz test, there was a remarkable 29% reduction in excess pore water pressure. Additionally, the study explores the impacts of varying distances between micropiles and examines how liquefaction influences the induced peak accelerations at different depths within the soil media. Notably, recorded accelerations on the surface decreased by up to 76% in the free field tests during liquefaction. This comprehensive exploration advances our understanding of micropile behaviour under seismic conditions, offering valuable insights for soil improvement projects.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.