Yu. L. Krutskii, T. S. Gudyma, A. I. Aparnev, A. V. Loginov, T. M. Krutskaya, A. V. Ukhina, N. Yu. Cherkasova, O. V. Netskina, E. A. Maximovskiy
{"title":"Synthesis of β-SiC Using Nanofibrous Carbon","authors":"Yu. L. Krutskii, T. S. Gudyma, A. I. Aparnev, A. V. Loginov, T. M. Krutskaya, A. V. Ukhina, N. Yu. Cherkasova, O. V. Netskina, E. A. Maximovskiy","doi":"10.1134/S2635167624602663","DOIUrl":null,"url":null,"abstract":"<p>The synthesis and study of the characteristics of β-phase silicon carbide powder is carried out. The compound is obtained by combining endothermic and exothermic reactions (carbothermic reduction of silicon dioxide and synthesis from simple substances) in an induction furnace in an atmosphere of nitrogen and carbon monoxide (CO). Nanofibrous carbon (NFC) is used as the reducing agent and carbide-forming reagent. This carbon agent is obtained as a result of the decomposition of light hydrocarbons. NFC is characterized by a high specific surface area (~150 m<sup>2</sup>/g) in comparison, for example, with carbon black (~50 m<sup>2</sup>/g). NFC is a fairly pure material and the impurity content in it does not exceed 1 wt %. Optimization of the synthesis conditions made it possible to obtain a single-phase product: cubic silicon carbide β-SiC. The powder had an average particle size of ~4 μm and a specific surface area of 7.7–8.4 m<sup>2</sup>/g. The resulting silicon carbide barely oxidizes when heated to 1000°C. Completion of the synthesis reaction is achieved for samples whose charge contained NFC, silicon oxide, and silicon powder in a molar ratio of 4 : 1 : 1, respectively. The optimal synthesis temperature is 1700–1900°C.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 1 supplement","pages":"S138 - S145"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624602663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis and study of the characteristics of β-phase silicon carbide powder is carried out. The compound is obtained by combining endothermic and exothermic reactions (carbothermic reduction of silicon dioxide and synthesis from simple substances) in an induction furnace in an atmosphere of nitrogen and carbon monoxide (CO). Nanofibrous carbon (NFC) is used as the reducing agent and carbide-forming reagent. This carbon agent is obtained as a result of the decomposition of light hydrocarbons. NFC is characterized by a high specific surface area (~150 m2/g) in comparison, for example, with carbon black (~50 m2/g). NFC is a fairly pure material and the impurity content in it does not exceed 1 wt %. Optimization of the synthesis conditions made it possible to obtain a single-phase product: cubic silicon carbide β-SiC. The powder had an average particle size of ~4 μm and a specific surface area of 7.7–8.4 m2/g. The resulting silicon carbide barely oxidizes when heated to 1000°C. Completion of the synthesis reaction is achieved for samples whose charge contained NFC, silicon oxide, and silicon powder in a molar ratio of 4 : 1 : 1, respectively. The optimal synthesis temperature is 1700–1900°C.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.