{"title":"Comprehensive study of tRNA-derived fragments in plants for biotic stress responses","authors":"Supriya P. Swain, Niyati Bisht, Shailesh Kumar","doi":"10.1007/s10142-025-01576-3","DOIUrl":null,"url":null,"abstract":"<div><p>Plant growth and development are often disrupted by biological stressors as they interfere with the regulatory pathways. Among the key regulators, transfer-RNA-derived fragments (tRFs) have emerged as key players in plant defense mechanisms. While tRF-mediated responses to abiotic stress have been well studied, their role in biotic stress remains less understood, as various stressors may elicit different regulatory systems. In this study, tRF-mediated biotic responses in three species, viz. <i>Arabidopsis thaliana, Oryza sativa,</i> and <i>Solanum lycopersicum</i> are investigated using <i>in-silico</i> approaches. Analysis of predicted tRFs across various biotic stress conditions reveals specific interactions with mRNA targets, microRNAs (miRNAs), and transposable elements (TEs), highlighting their regulatory significance in plant adaptation mechanisms. These findings provide new insights into tRF-mediated stress responses and establish a computational framework for further functional studies. The study’s database is publicly available at http://www.nipgr.ac.in/PbtRFdb.\n</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-025-01576-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant growth and development are often disrupted by biological stressors as they interfere with the regulatory pathways. Among the key regulators, transfer-RNA-derived fragments (tRFs) have emerged as key players in plant defense mechanisms. While tRF-mediated responses to abiotic stress have been well studied, their role in biotic stress remains less understood, as various stressors may elicit different regulatory systems. In this study, tRF-mediated biotic responses in three species, viz. Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum are investigated using in-silico approaches. Analysis of predicted tRFs across various biotic stress conditions reveals specific interactions with mRNA targets, microRNAs (miRNAs), and transposable elements (TEs), highlighting their regulatory significance in plant adaptation mechanisms. These findings provide new insights into tRF-mediated stress responses and establish a computational framework for further functional studies. The study’s database is publicly available at http://www.nipgr.ac.in/PbtRFdb.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?