Machine-Learning Predictive Model for Semiautomated Monitoring of Solid Content in Water-Based Drilling Fluids

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Shadfar Davoodi, Sergey V. Muravyov, David A. Wood, Mohammad Mehrad, Valeriy S. Rukavishnikov
{"title":"Machine-Learning Predictive Model for Semiautomated Monitoring of Solid Content in Water-Based Drilling Fluids","authors":"Shadfar Davoodi,&nbsp;Sergey V. Muravyov,&nbsp;David A. Wood,&nbsp;Mohammad Mehrad,&nbsp;Valeriy S. Rukavishnikov","doi":"10.1007/s13369-024-09689-w","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate and frequent monitoring of the solid content (SC) of drilling fluids is necessary to avoid the issues associated with improper solid particle concentrations. Conventional methods for determining SC, such as retort analysis, lack immediacy and are labor-intensive. This study applies machine learning (ML) techniques to develop SC predictive models using readily available data—Marsh funnel viscosity and fluid density. A dataset of 1290 data records was collected from 17 wells drilled in two oil fields located in southwest Iran. Four ML models—least squares support vector machine (LSSVM), multilayered perceptron neural network, extreme learning machine, and generalized regression neural network—were developed to predict SC from the compiled dataset. Multiple assessment techniques were applied to attentively evaluate the models’ prediction performances and select the best-performing, SC prediction model. The LSSVM model generated the least errors, exhibiting the lowest root-mean-square error values for the training (1.80%) and testing (1.84%) subsets. The narrowest confidence interval, 0.18, achieved by the LSSVM model confirmed its reliability for SC prediction. Leverage analysis revealed minimal influence of outlier data on the LSSVM model's SC prediction performance. The trained LSSVM model was further validated on unseen data from another well drilled in one of the studied oil fields, demonstrating the model’s generalizability for providing credible close-to-real-time SC predictions in the studied fields.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 7","pages":"5175 - 5194"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09689-w","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and frequent monitoring of the solid content (SC) of drilling fluids is necessary to avoid the issues associated with improper solid particle concentrations. Conventional methods for determining SC, such as retort analysis, lack immediacy and are labor-intensive. This study applies machine learning (ML) techniques to develop SC predictive models using readily available data—Marsh funnel viscosity and fluid density. A dataset of 1290 data records was collected from 17 wells drilled in two oil fields located in southwest Iran. Four ML models—least squares support vector machine (LSSVM), multilayered perceptron neural network, extreme learning machine, and generalized regression neural network—were developed to predict SC from the compiled dataset. Multiple assessment techniques were applied to attentively evaluate the models’ prediction performances and select the best-performing, SC prediction model. The LSSVM model generated the least errors, exhibiting the lowest root-mean-square error values for the training (1.80%) and testing (1.84%) subsets. The narrowest confidence interval, 0.18, achieved by the LSSVM model confirmed its reliability for SC prediction. Leverage analysis revealed minimal influence of outlier data on the LSSVM model's SC prediction performance. The trained LSSVM model was further validated on unseen data from another well drilled in one of the studied oil fields, demonstrating the model’s generalizability for providing credible close-to-real-time SC predictions in the studied fields.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering MULTIDISCIPLINARY SCIENCES-
CiteScore
5.70
自引率
3.40%
发文量
993
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信