Zuwei Fan, Yihai Xue, Hao Liu, Yuanyuan Yu, Rangtong Liu
{"title":"Durable flame-retardant finishing of cotton fabric via constructing multiple crosslinked layers","authors":"Zuwei Fan, Yihai Xue, Hao Liu, Yuanyuan Yu, Rangtong Liu","doi":"10.1007/s10570-025-06393-2","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the flame-retardant performance of cotton fabric, multiple crosslinked layers were constructed on cotton fiber surfaces through polymerization of <i>m</i>-phenylenediamine (MPD)/tetrakis hydroxymethyl phosphonium chloride (THPC) and trimesoyl chloride (TMC). The resulting morphology, general properties, flame retardancy, and durability were characterized and analyzed. Cotton fabric alternately finished with MPD-TMC and THPC-TMC displayed greater changes in surface morphology than that finished with single crosslinked products. The former material had the highest weight gain percentage and so possessed significantly higher limiting oxygen index (LOI) value and weaker heat release, accompanied by formation of a more robust carbonaceous layer during micro combustion calorimetry. After alternating finishing with MPD-TMC and THPC-TMC, the cotton fabric exhibited increased flexural rigidity and decreased air permeability, with the change influenced by the number of finishing cycles. Increased finishing cycles also resulted in an increased LOI, up to 33.5% after five cycles. According to micro combustion calorimetry results, heat release was suppressed more effectively as long as the number of finishing cycles reached three, such that finishing with 3 cycles was optimal in this study. Moreover, a fabric with 3 cycles of alternating finishing almost kept its LOI value after washing in disturbed water for 24 h, exhibiting good durability for flame retardancy, which would be beneficial in real applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 4","pages":"2649 - 2661"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-025-06393-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the flame-retardant performance of cotton fabric, multiple crosslinked layers were constructed on cotton fiber surfaces through polymerization of m-phenylenediamine (MPD)/tetrakis hydroxymethyl phosphonium chloride (THPC) and trimesoyl chloride (TMC). The resulting morphology, general properties, flame retardancy, and durability were characterized and analyzed. Cotton fabric alternately finished with MPD-TMC and THPC-TMC displayed greater changes in surface morphology than that finished with single crosslinked products. The former material had the highest weight gain percentage and so possessed significantly higher limiting oxygen index (LOI) value and weaker heat release, accompanied by formation of a more robust carbonaceous layer during micro combustion calorimetry. After alternating finishing with MPD-TMC and THPC-TMC, the cotton fabric exhibited increased flexural rigidity and decreased air permeability, with the change influenced by the number of finishing cycles. Increased finishing cycles also resulted in an increased LOI, up to 33.5% after five cycles. According to micro combustion calorimetry results, heat release was suppressed more effectively as long as the number of finishing cycles reached three, such that finishing with 3 cycles was optimal in this study. Moreover, a fabric with 3 cycles of alternating finishing almost kept its LOI value after washing in disturbed water for 24 h, exhibiting good durability for flame retardancy, which would be beneficial in real applications.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.