In Situ Monitoring of Cracking Mechanisms in Multi-Layered Suspension Plasma-Sprayed Thermal Barrier Coatings

IF 3.2 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Mohamed Amer, Nicholas Curry, Muhammad Arshad, Qamar Hayat, Vit Janik, Jon Nottingham, Mingwen Bai
{"title":"In Situ Monitoring of Cracking Mechanisms in Multi-Layered Suspension Plasma-Sprayed Thermal Barrier Coatings","authors":"Mohamed Amer,&nbsp;Nicholas Curry,&nbsp;Muhammad Arshad,&nbsp;Qamar Hayat,&nbsp;Vit Janik,&nbsp;Jon Nottingham,&nbsp;Mingwen Bai","doi":"10.1007/s11666-024-01887-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the in situ technique was used to observe crack formation and growth in multilayer suspension plasma spray (SPS) thermal barrier coatings (TBCs). Utilizing synchronized three-point bending (3 PB) and scanning electron microscopy, coupled with digital image correlation, we gained real-time insights into strain field dynamics around cracking zones. This approach allowed us to induce bending-driven failure in both single and multi-layered SPS coatings to explore crack behavior in these cauliflower-like multilayer TBCs. Our observations revealed that columnar gaps facilitate crack initiation and propagation from the coatings’ free surfaces. The triple-layer SPS coating showed a reduced susceptibility to vertical cracking compared to other SPS structures, due to a dense gadolinium zirconate layer on the top. Additionally, the splat structure of the bond coat (BC) layer contributes to crack relative path deflection, which could enhance the fracture toughness of the SPS coatings by dissipating the energy needed for crack propagation. Moreover, it was revealed that grit particles at the BC/substrate interface appear to promote crack branching near the interface, localized coating delamination, and serve as nucleation sites for crack development. Therefore, optimizing the grit-blasting process of the substrate prior to BC layer deposition is essential for minimizing the likelihood of crack formation under operational conditions, thereby enhancing durability and extending the lifespan of the coatings. This study highlights the critical role of in situ observation in unraveling the complex failure mechanisms of multi-layered coatings, paving the way for the design of advanced coatings with improved performance in extreme environments.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 2-3","pages":"765 - 782"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01887-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the in situ technique was used to observe crack formation and growth in multilayer suspension plasma spray (SPS) thermal barrier coatings (TBCs). Utilizing synchronized three-point bending (3 PB) and scanning electron microscopy, coupled with digital image correlation, we gained real-time insights into strain field dynamics around cracking zones. This approach allowed us to induce bending-driven failure in both single and multi-layered SPS coatings to explore crack behavior in these cauliflower-like multilayer TBCs. Our observations revealed that columnar gaps facilitate crack initiation and propagation from the coatings’ free surfaces. The triple-layer SPS coating showed a reduced susceptibility to vertical cracking compared to other SPS structures, due to a dense gadolinium zirconate layer on the top. Additionally, the splat structure of the bond coat (BC) layer contributes to crack relative path deflection, which could enhance the fracture toughness of the SPS coatings by dissipating the energy needed for crack propagation. Moreover, it was revealed that grit particles at the BC/substrate interface appear to promote crack branching near the interface, localized coating delamination, and serve as nucleation sites for crack development. Therefore, optimizing the grit-blasting process of the substrate prior to BC layer deposition is essential for minimizing the likelihood of crack formation under operational conditions, thereby enhancing durability and extending the lifespan of the coatings. This study highlights the critical role of in situ observation in unraveling the complex failure mechanisms of multi-layered coatings, paving the way for the design of advanced coatings with improved performance in extreme environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thermal Spray Technology
Journal of Thermal Spray Technology 工程技术-材料科学:膜
CiteScore
5.20
自引率
25.80%
发文量
198
审稿时长
2.6 months
期刊介绍: From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving. A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization. The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信