O. I. Soboleva, M. R. Polyvianova, O. I. Il’in, M. V. Il’ina
{"title":"Influence of the Activation Time on the Piezoelectric Properties of Nitrogen-Doped Carbon Nanotubes","authors":"O. I. Soboleva, M. R. Polyvianova, O. I. Il’in, M. V. Il’ina","doi":"10.1134/S2635167624602778","DOIUrl":null,"url":null,"abstract":"<p>At present, there is an increasing need to create energy-efficient power supplies for wearable devices. In recent studies, we found that nitrogen-doped carbon nanotubes (N-CNTs), which exhibit anomalous piezoelectric properties, can be used as the basis for such devices. This paper presents the results of studying the effect of the activation time of catalytic centers during the growth of carbon nanotubes on the value of their piezoelectric strain coefficient and the value of the generated current. It is found that with an increase in the activation time of catalytic centers from 1 to 30 min, the value of the piezoelectric strain coefficient decreases from 19.78 to 4.49 pm/V, which is associated with a change in the geometric dimensions of the catalytic centers and, consequently, the structure of the N-CNTs. The results obtained can be used to create energy-efficient piezoelectric nanogenerators.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 1 supplement","pages":"S112 - S116"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624602778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
At present, there is an increasing need to create energy-efficient power supplies for wearable devices. In recent studies, we found that nitrogen-doped carbon nanotubes (N-CNTs), which exhibit anomalous piezoelectric properties, can be used as the basis for such devices. This paper presents the results of studying the effect of the activation time of catalytic centers during the growth of carbon nanotubes on the value of their piezoelectric strain coefficient and the value of the generated current. It is found that with an increase in the activation time of catalytic centers from 1 to 30 min, the value of the piezoelectric strain coefficient decreases from 19.78 to 4.49 pm/V, which is associated with a change in the geometric dimensions of the catalytic centers and, consequently, the structure of the N-CNTs. The results obtained can be used to create energy-efficient piezoelectric nanogenerators.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.