Non-stationary multichannel spectral inversion of seismic data

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Yaoguang Sun, Siyuan Cao, Yuxin Su, Jie Zhou, Zhenshuo Ma
{"title":"Non-stationary multichannel spectral inversion of seismic data","authors":"Yaoguang Sun,&nbsp;Siyuan Cao,&nbsp;Yuxin Su,&nbsp;Jie Zhou,&nbsp;Zhenshuo Ma","doi":"10.1007/s11200-023-0309-3","DOIUrl":null,"url":null,"abstract":"<div><p>Spectral inversion, based on the odd-even decomposition principle of reflectivity, used the relationship between seismic data and wavelet amplitude spectrum to establish the inversion equation and achieve resolution-enhancement processing. Compared with deconvolution based on the L<sub>2</sub> norm, the odd and even components of reflectivity using spectral inversion can weaken the tuning effect, identify thin layers, and obtain data with higher resolution. However, most post-stack seismic data are non-stationary, i.e., attenuation of amplitude, phase, and frequency with time exists. We derived a resolution-enhancement algorithm of non-stationary seismic data with quality factor Q based on the short-time Fourier transform. Due to the instability of the spectral inversion algorithm, the lateral continuity of the obtained result is poor. Therefore, we proposed a multichannel spectral inversion algorithm with lateral constraints. The algorithm inherits the high-resolution characteristics of spectral inversion and effectively enhances lateral continuity. Applications to model and field data sets show that the proposed L<sub>2</sub> norm-based non-stationary multichannel spectral inversion method can be effectively applied to the resolution-improvement processing of non-stationary seismic data.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"69 1","pages":"41 - 56"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-023-0309-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral inversion, based on the odd-even decomposition principle of reflectivity, used the relationship between seismic data and wavelet amplitude spectrum to establish the inversion equation and achieve resolution-enhancement processing. Compared with deconvolution based on the L2 norm, the odd and even components of reflectivity using spectral inversion can weaken the tuning effect, identify thin layers, and obtain data with higher resolution. However, most post-stack seismic data are non-stationary, i.e., attenuation of amplitude, phase, and frequency with time exists. We derived a resolution-enhancement algorithm of non-stationary seismic data with quality factor Q based on the short-time Fourier transform. Due to the instability of the spectral inversion algorithm, the lateral continuity of the obtained result is poor. Therefore, we proposed a multichannel spectral inversion algorithm with lateral constraints. The algorithm inherits the high-resolution characteristics of spectral inversion and effectively enhances lateral continuity. Applications to model and field data sets show that the proposed L2 norm-based non-stationary multichannel spectral inversion method can be effectively applied to the resolution-improvement processing of non-stationary seismic data.

地震资料的非平稳多通道频谱反演
光谱反演基于反射率的奇偶分解原理,利用地震数据与小波振幅谱之间的关系建立反演方程,实现分辨率增强处理。与基于L2范数的反褶积相比,利用光谱反演反射率奇偶分量可以减弱调谐效应,识别薄层,获得更高分辨率的数据。然而,大多数叠后地震数据是非平稳的,即振幅、相位和频率随时间衰减。提出了一种基于短时傅里叶变换的带质量因子Q的非平稳地震数据分辨率增强算法。由于谱反演算法的不稳定性,得到的结果横向连续性较差。为此,我们提出了一种具有横向约束的多通道频谱反演算法。该算法继承了光谱反演的高分辨率特征,有效增强了横向连续性。模型和实测数据表明,基于L2范数的非平稳多道谱反演方法可以有效地应用于非平稳地震资料的分辨率提高处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信