New scattered subspaces in higher dimensions

IF 1 3区 数学 Q1 MATHEMATICS
Daniele Bartoli, Alessandro Giannoni, Giuseppe Marino
{"title":"New scattered subspaces in higher dimensions","authors":"Daniele Bartoli,&nbsp;Alessandro Giannoni,&nbsp;Giuseppe Marino","doi":"10.1007/s10231-024-01507-2","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past few decades, there has been extensive research on scattered subspaces, partly because of their link to MRD codes. These subspaces can be characterized using linearized polynomials over finite fields. Within this context, scattered sequences extend the concept of scattered polynomials and can be viewed as geometric equivalents of exceptional MRD codes. Up to now, only scattered sequences of orders one and two have been developed. However, this paper presents an infinite series of exceptional scattered sequences of any order beyond two which correspond to scattered subspaces that cannot be obtained as direct sum of scattered subspaces in smaller dimensions. The paper also addresses equivalence concerns within this framework.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 2","pages":"815 - 834"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01507-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01507-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past few decades, there has been extensive research on scattered subspaces, partly because of their link to MRD codes. These subspaces can be characterized using linearized polynomials over finite fields. Within this context, scattered sequences extend the concept of scattered polynomials and can be viewed as geometric equivalents of exceptional MRD codes. Up to now, only scattered sequences of orders one and two have been developed. However, this paper presents an infinite series of exceptional scattered sequences of any order beyond two which correspond to scattered subspaces that cannot be obtained as direct sum of scattered subspaces in smaller dimensions. The paper also addresses equivalence concerns within this framework.

更高维度的新分散子空间
在过去的几十年里,人们对分散的子空间进行了广泛的研究,部分原因是它们与MRD代码的联系。这些子空间可以用有限域上的线性化多项式来表征。在这种情况下,分散序列扩展了分散多项式的概念,可以看作是特殊MRD代码的几何等价物。到目前为止,只开发了一阶和二阶的分散序列。然而,本文给出了一个无限级数的超过2阶的例外散射序列,它们对应于散射子空间,不能用较小维数上的散射子空间的直接和来得到。本文还在此框架内讨论了等效问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信