O. A. Shashkova, N. A. Verlov, K. O. Avrov, S. V. Soloveva, L. A. Terekhina, A. A. Pinevich, S. V. Shatik, V. V. Zaicev, E. B. Furkina, M. A. Nadporozskiy, V. S. Burdakov, I. A. Kulakov, T. A. Shtam, A. A. Stanzevskiy, M. P. Samoylovich, A. L. Konevega
{"title":"Preparation and Characterization of 161TB-DOTA-PSMA-617 Using a New Cell Model","authors":"O. A. Shashkova, N. A. Verlov, K. O. Avrov, S. V. Soloveva, L. A. Terekhina, A. A. Pinevich, S. V. Shatik, V. V. Zaicev, E. B. Furkina, M. A. Nadporozskiy, V. S. Burdakov, I. A. Kulakov, T. A. Shtam, A. A. Stanzevskiy, M. P. Samoylovich, A. L. Konevega","doi":"10.1134/S2635167624602808","DOIUrl":null,"url":null,"abstract":"<p>Terbium-161 is a radioisotope characterized by β-emission, emission of Auger electrons, conversion electrons, and, to a lesser extent, gamma and X-rays. Tb-161 radioconjugate with the DOTA-PSMA-617 ligand (considered as a promising drug for radiotherapy of prostate cancer) was synthesized on the basis of components produced in Russian Federation. The physicochemical characteristics of <sup>161</sup>Tb-DOTA-PSMA-617 were investigated. The ability of the radioconjugate to bind to cell membrane receptor was studied on cell line in vitro and in mice in vivo using a new CT26-PSMA cell model representing genetically modified mouse carcinoma cells expressing human PSMA. The pharmacokinetics and biodistribution of the radioconjugate were investigated. The radiopharmaceutical demonstrated highly specific accumulation in the tumor expressing human PSMA unlike in the control tumor. It was not significantly accumulated in the kidneys and other animals’ organs. The blood half-life time of the radiopharmaceutical was determined as 38.4 min. Thus, according to the main criteria, the synthesized radioconjugate <sup>161</sup>Tb-DOTA-PSMA-617 is a promising radiopharmaceutical for the treatment of prostate cancer.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 1 supplement","pages":"S218 - S225"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624602808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Terbium-161 is a radioisotope characterized by β-emission, emission of Auger electrons, conversion electrons, and, to a lesser extent, gamma and X-rays. Tb-161 radioconjugate with the DOTA-PSMA-617 ligand (considered as a promising drug for radiotherapy of prostate cancer) was synthesized on the basis of components produced in Russian Federation. The physicochemical characteristics of 161Tb-DOTA-PSMA-617 were investigated. The ability of the radioconjugate to bind to cell membrane receptor was studied on cell line in vitro and in mice in vivo using a new CT26-PSMA cell model representing genetically modified mouse carcinoma cells expressing human PSMA. The pharmacokinetics and biodistribution of the radioconjugate were investigated. The radiopharmaceutical demonstrated highly specific accumulation in the tumor expressing human PSMA unlike in the control tumor. It was not significantly accumulated in the kidneys and other animals’ organs. The blood half-life time of the radiopharmaceutical was determined as 38.4 min. Thus, according to the main criteria, the synthesized radioconjugate 161Tb-DOTA-PSMA-617 is a promising radiopharmaceutical for the treatment of prostate cancer.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.