Influence of hemicellulose and lignin on the fibrillation efficiency and properties of cellulose nanofibrils from native and oxidized Eucalyptus nitens and Pinus radiata pulps

IF 4.9 2区 工程技术 Q1 MATERIALS SCIENCE, PAPER & WOOD
Gregory Albornoz-Palma, Sergio Henríquez-Gallegos, Isidora Ortega-Sanhueza, Roberto Teruel-Juanes, A. Ribes-Greus, Miguel Pereira
{"title":"Influence of hemicellulose and lignin on the fibrillation efficiency and properties of cellulose nanofibrils from native and oxidized Eucalyptus nitens and Pinus radiata pulps","authors":"Gregory Albornoz-Palma,&nbsp;Sergio Henríquez-Gallegos,&nbsp;Isidora Ortega-Sanhueza,&nbsp;Roberto Teruel-Juanes,&nbsp;A. Ribes-Greus,&nbsp;Miguel Pereira","doi":"10.1007/s10570-025-06433-x","DOIUrl":null,"url":null,"abstract":"<div><p>Comprehending how raw materials, pretreatments, and treatments affect the properties of cellulose nanofibrils (CNFs) is crucial for their use. This study aims to understand the effect that alkaline treatment has on the characteristics of pulps, the mechanical processes of CNF production, and the characteristics of CNFs from <i>Pinus radiata</i> and <i>Eucalyptus nitens</i> pulps with native and oxidized lignin. For this purpose, <i>Pinus radiata</i> and <i>Eucalyptus nitens</i> pulps with different lignin contents produced by oxidative pretreatment were used as raw material. From these, pulps with different hemicellulose and lignin contents were produced by alkaline treatment. Furthermore, CNFs were prepared by refining and homogenization processes. The chemical composition analysis of pulps containing native lignin, before and after alkaline treatment, revealed distinct behaviors of hemicellulose. In <i>Pinus radiata</i> pulp, hemicellulose remained insoluble under alkaline conditions. In contrast, the hemicellulose from <i>Eucalyptus nitens</i> pulp was partially soluble. Morphological characteristics of CNFs revealed that removing 41.8% of total hemicellulose by alkaline treatment promoted the mechanical fibrillation of <i>Eucalyptus nitens</i> pulp with native lignin, decreasing the average width by 30%. Furthermore, a very low lignin content in this species (~ 1.3%) hindered the mechanical fibrillation of fibers. Finally, the dielectric spectra of CNFs showed that the alkaline treatment increased the activation energies of the relaxations associated with the molecular motions of the hemicellulose and lignin groups, evidencing changes in their structures. These changes were related to the deacetylation of hemicellulose, and the deprotonation of hydroxy groups and the formation of carboxyl groups in lignin.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 4","pages":"2629 - 2648"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-025-06433-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Comprehending how raw materials, pretreatments, and treatments affect the properties of cellulose nanofibrils (CNFs) is crucial for their use. This study aims to understand the effect that alkaline treatment has on the characteristics of pulps, the mechanical processes of CNF production, and the characteristics of CNFs from Pinus radiata and Eucalyptus nitens pulps with native and oxidized lignin. For this purpose, Pinus radiata and Eucalyptus nitens pulps with different lignin contents produced by oxidative pretreatment were used as raw material. From these, pulps with different hemicellulose and lignin contents were produced by alkaline treatment. Furthermore, CNFs were prepared by refining and homogenization processes. The chemical composition analysis of pulps containing native lignin, before and after alkaline treatment, revealed distinct behaviors of hemicellulose. In Pinus radiata pulp, hemicellulose remained insoluble under alkaline conditions. In contrast, the hemicellulose from Eucalyptus nitens pulp was partially soluble. Morphological characteristics of CNFs revealed that removing 41.8% of total hemicellulose by alkaline treatment promoted the mechanical fibrillation of Eucalyptus nitens pulp with native lignin, decreasing the average width by 30%. Furthermore, a very low lignin content in this species (~ 1.3%) hindered the mechanical fibrillation of fibers. Finally, the dielectric spectra of CNFs showed that the alkaline treatment increased the activation energies of the relaxations associated with the molecular motions of the hemicellulose and lignin groups, evidencing changes in their structures. These changes were related to the deacetylation of hemicellulose, and the deprotonation of hydroxy groups and the formation of carboxyl groups in lignin.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellulose
Cellulose 工程技术-材料科学:纺织
CiteScore
10.10
自引率
10.50%
发文量
580
审稿时长
3-8 weeks
期刊介绍: Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信