{"title":"Some counterexamples to Alt–Caffarelli–Friedman monotonicity formulas in Carnot groups","authors":"Fausto Ferrari, Davide Giovagnoli","doi":"10.1007/s10231-024-01490-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we continue the analysis of an Alt–Caffarelli–Friedman (ACF) monotonicity formula in Carnot groups of step <span>\\(s >1\\)</span> confirming the existence of counterexamples to the monotone increasing behavior. In particular, we provide a sufficient condition that implies the existence of some counterexamples to the monotone increasing behavior of the ACF formula in Carnot groups. The main tool is based on the lack of orthogonality of harmonic polynomials in Carnot groups. This paper generalizes the results proved in Ferrari and Forcillo (Atti Accad Naz Lincei Rend Lincei Mat Appl 34(2):295–306, 2023).</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 2","pages":"427 - 445"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01490-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01490-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we continue the analysis of an Alt–Caffarelli–Friedman (ACF) monotonicity formula in Carnot groups of step \(s >1\) confirming the existence of counterexamples to the monotone increasing behavior. In particular, we provide a sufficient condition that implies the existence of some counterexamples to the monotone increasing behavior of the ACF formula in Carnot groups. The main tool is based on the lack of orthogonality of harmonic polynomials in Carnot groups. This paper generalizes the results proved in Ferrari and Forcillo (Atti Accad Naz Lincei Rend Lincei Mat Appl 34(2):295–306, 2023).
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.