Some counterexamples to Alt–Caffarelli–Friedman monotonicity formulas in Carnot groups

IF 1 3区 数学 Q1 MATHEMATICS
Fausto Ferrari, Davide Giovagnoli
{"title":"Some counterexamples to Alt–Caffarelli–Friedman monotonicity formulas in Carnot groups","authors":"Fausto Ferrari,&nbsp;Davide Giovagnoli","doi":"10.1007/s10231-024-01490-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we continue the analysis of an Alt–Caffarelli–Friedman (ACF) monotonicity formula in Carnot groups of step <span>\\(s &gt;1\\)</span> confirming the existence of counterexamples to the monotone increasing behavior. In particular, we provide a sufficient condition that implies the existence of some counterexamples to the monotone increasing behavior of the ACF formula in Carnot groups. The main tool is based on the lack of orthogonality of harmonic polynomials in Carnot groups. This paper generalizes the results proved in Ferrari and Forcillo (Atti Accad Naz Lincei Rend Lincei Mat Appl 34(2):295–306, 2023).</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 2","pages":"427 - 445"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01490-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01490-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we continue the analysis of an Alt–Caffarelli–Friedman (ACF) monotonicity formula in Carnot groups of step \(s >1\) confirming the existence of counterexamples to the monotone increasing behavior. In particular, we provide a sufficient condition that implies the existence of some counterexamples to the monotone increasing behavior of the ACF formula in Carnot groups. The main tool is based on the lack of orthogonality of harmonic polynomials in Carnot groups. This paper generalizes the results proved in Ferrari and Forcillo (Atti Accad Naz Lincei Rend Lincei Mat Appl 34(2):295–306, 2023).

卡诺群中al - caffarelli - friedman单调公式的一些反例
在本文中,我们继续分析步长\(s >1\)的卡诺群中的一个Alt-Caffarelli-Friedman (ACF)单调公式,证实了单调递增行为的反例的存在性。特别地,我们提供了一个充分条件,证明ACF公式在卡诺群中单调递增性的反例存在。主要的工具是基于卡诺群中调和多项式缺乏正交性。本文推广了Ferrari和Forcillo (Atti Accad Naz Lincei Rend Lincei Mat应用34(2):295 - 306,2023)中证明的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信