Length-flexible strategies for efficient SERS performance in gold-nanorod-gapped nanoantennas

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sergio F. Flores-Correa, L. M. León Hilario, I. A. Ramos-Pérez, Andres A. Reynoso
{"title":"Length-flexible strategies for efficient SERS performance in gold-nanorod-gapped nanoantennas","authors":"Sergio F. Flores-Correa,&nbsp;L. M. León Hilario,&nbsp;I. A. Ramos-Pérez,&nbsp;Andres A. Reynoso","doi":"10.1186/s11671-025-04228-4","DOIUrl":null,"url":null,"abstract":"<div><p>Surface-enhanced Raman spectroscopy (SERS) using gold-nanorod-dimer nanoantennas has shown great potential in various applications. This reflects in their large values of the customary figure of merit of SERS: the enhancement factor (EF), which is essentially the fourth power of the electric field integrated at the gap, the location at which target molecules are to be sensed. However, fabrication errors in the nanorod lengths can lead to significant variations in the enhancement factor, resulting in performance limitations whenever low values of EF are encountered. Here, we report both design and procedural strategies to address this issue. First, we show that by reducing the nanorod diameter from 360 to 260 nm, the EF minima can be avoided for any nanorod length, mitigating the impact of fabrication errors. In addition, we explore the influence of incident wave polarization and orientation on the EF. Our simulations reveal that by tilting the excitation away from normal incidence, it is possible to substantially enhance EF under conditions that would otherwise exhibit low enhancement. In particular, this includes the case of 360 nm diameter. These findings expand the fabrication tolerance and broaden the range of usability of gold-nanorod-dimer nanoantennas, enabling more robust and reliable SERS performance. Importantly, we also show that these strategies also apply to nanoantennas with covered nanorod ends, which are of particular interest for realizing hybrid devices that combine SERS with electrical transport measurements.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04228-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04228-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface-enhanced Raman spectroscopy (SERS) using gold-nanorod-dimer nanoantennas has shown great potential in various applications. This reflects in their large values of the customary figure of merit of SERS: the enhancement factor (EF), which is essentially the fourth power of the electric field integrated at the gap, the location at which target molecules are to be sensed. However, fabrication errors in the nanorod lengths can lead to significant variations in the enhancement factor, resulting in performance limitations whenever low values of EF are encountered. Here, we report both design and procedural strategies to address this issue. First, we show that by reducing the nanorod diameter from 360 to 260 nm, the EF minima can be avoided for any nanorod length, mitigating the impact of fabrication errors. In addition, we explore the influence of incident wave polarization and orientation on the EF. Our simulations reveal that by tilting the excitation away from normal incidence, it is possible to substantially enhance EF under conditions that would otherwise exhibit low enhancement. In particular, this includes the case of 360 nm diameter. These findings expand the fabrication tolerance and broaden the range of usability of gold-nanorod-dimer nanoantennas, enabling more robust and reliable SERS performance. Importantly, we also show that these strategies also apply to nanoantennas with covered nanorod ends, which are of particular interest for realizing hybrid devices that combine SERS with electrical transport measurements.

金纳米棒间隙纳米天线中有效SERS性能的长度柔性策略
利用金纳米棒二聚体纳米天线的表面增强拉曼光谱(SERS)在各种应用中显示出巨大的潜力。这反映在它们的SERS通常的优点值:增强因子(EF)的大值上,它本质上是在间隙处集成的电场的四次方,即目标分子被感测的位置。然而,纳米棒长度的制造误差会导致增强因子的显著变化,从而在遇到较低的EF值时导致性能限制。在这里,我们报告了解决这个问题的设计和程序策略。首先,我们发现通过将纳米棒直径从360 nm减小到260 nm,可以避免任何纳米棒长度的EF最小值,从而减轻制造误差的影响。此外,我们还探讨了入射波的偏振和取向对EF的影响。我们的模拟表明,通过倾斜激发远离正入射,可以在低增强条件下大幅增强EF。特别是,这包括360纳米直径的情况。这些发现扩大了金纳米棒二聚体纳米天线的制造公差和可用性范围,实现了更强大和可靠的SERS性能。重要的是,我们还表明这些策略也适用于具有覆盖纳米棒末端的纳米天线,这对于实现将SERS与电输运测量相结合的混合设备特别感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信