{"title":"On Trapped Flux in a Small Crystal of CaKFe\\(_4\\)As\\(_4\\) and Implications for High-Pressure Hydrides","authors":"J. E. Hirsch, F. Marsiglio","doi":"10.1007/s10948-025-06948-1","DOIUrl":null,"url":null,"abstract":"<div><p>In recent work (Bud’ko et al. Supercond. Sci. Technol. <b>37</b>, 065010 2024), Bud’ko et al. present experimental results for trapped magnetic flux for a tiny sample of a type II superconductor, <span>\\(CaKFe_4As_4\\)</span>. The paper aims to provide evidence in support of the interpretation that similar measurements performed in samples of hydrogen-rich materials under high pressure by Minkov et al. (Nat. Phys. <b>19</b>, 1293 2023) are conclusive evidence (Eremets Nat. Sci. Rev. <b>11</b>, nwae047 2024) for superconductivity in hydrides under pressure. Here, we point out that the new evidence presented by Bud’ko et al. (Supercond. Sci. Technol. <b>37</b>, 065010 2024) further supports our interpretation (Hirsch and Marsiglio J. Supercond. Nov. Magn. <b>35</b>, 3141–3145 2022; Hirsch and Marsiglio Phys. C <b>620</b>, 1354500 2024) that the reported measurements of trapped flux on hydrides under pressure (Minkov et al. Nat. Phys. <b>19</b>, 1293 2023) are not consistent with what would be expected from a superconducting sample.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10948-025-06948-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-06948-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In recent work (Bud’ko et al. Supercond. Sci. Technol. 37, 065010 2024), Bud’ko et al. present experimental results for trapped magnetic flux for a tiny sample of a type II superconductor, \(CaKFe_4As_4\). The paper aims to provide evidence in support of the interpretation that similar measurements performed in samples of hydrogen-rich materials under high pressure by Minkov et al. (Nat. Phys. 19, 1293 2023) are conclusive evidence (Eremets Nat. Sci. Rev. 11, nwae047 2024) for superconductivity in hydrides under pressure. Here, we point out that the new evidence presented by Bud’ko et al. (Supercond. Sci. Technol. 37, 065010 2024) further supports our interpretation (Hirsch and Marsiglio J. Supercond. Nov. Magn. 35, 3141–3145 2022; Hirsch and Marsiglio Phys. C 620, 1354500 2024) that the reported measurements of trapped flux on hydrides under pressure (Minkov et al. Nat. Phys. 19, 1293 2023) are not consistent with what would be expected from a superconducting sample.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.