Toeplitz operators on monomial polyhedra

IF 1 3区 数学 Q1 MATHEMATICS
Debraj Chakrabarti, Yanyan Tang, Shuo Zhang
{"title":"Toeplitz operators on monomial polyhedra","authors":"Debraj Chakrabarti,&nbsp;Yanyan Tang,&nbsp;Shuo Zhang","doi":"10.1007/s10231-024-01495-3","DOIUrl":null,"url":null,"abstract":"<div><p>Monomial polyhedra are a class of bounded singular Reinhardt domains defined as sublevel sets of holomorphic monomials. In this paper, we completely characterize the <span>\\(L^p-L^q\\)</span> boundedness of the Toeplitz operators with radial symbols on monomial polyhedra. This work generalizes the previous results of Toeplitz operators on various generalized Hartogs triangles, as well as extends the recent work of the <span>\\(L^p\\)</span> regularity for the Bergman projection on monomial polyhedra.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 2","pages":"543 - 571"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01495-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Monomial polyhedra are a class of bounded singular Reinhardt domains defined as sublevel sets of holomorphic monomials. In this paper, we completely characterize the \(L^p-L^q\) boundedness of the Toeplitz operators with radial symbols on monomial polyhedra. This work generalizes the previous results of Toeplitz operators on various generalized Hartogs triangles, as well as extends the recent work of the \(L^p\) regularity for the Bergman projection on monomial polyhedra.

单项式多面体上的Toeplitz算子
单项式多面体是一类定义为全纯单项式的子水平集的有界奇异Reinhardt域。本文完整地刻画了单项式多面体上具有径向符号的Toeplitz算子的\(L^p-L^q\)有界性。本文推广了前人关于各种广义Hartogs三角形上Toeplitz算子的结果,并推广了最近关于单项式多面体上Bergman投影\(L^p\)正则性的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信