Microstructural and Mechanical Properties of WC-17Co Deposited Using Laser Direct Energy Deposition (LDED) and High-Velocity Oxygen Fuel (HVOF)

IF 3.2 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Fardad Azarmi, Theresa Grabowski, Martin McDonnell
{"title":"Microstructural and Mechanical Properties of WC-17Co Deposited Using Laser Direct Energy Deposition (LDED) and High-Velocity Oxygen Fuel (HVOF)","authors":"Fardad Azarmi,&nbsp;Theresa Grabowski,&nbsp;Martin McDonnell","doi":"10.1007/s11666-025-01933-5","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, laser deposition technologies have made significant advancements in their ability to manufacture high-temperature metals and ceramics. One of these technologies, known as laser direct energy deposition (LDED), has the potential to deposit a wide range of materials from polymers to refractory materials, ceramics and functionally graded materials. This study evaluates major microstructural characteristics of WC-17 Co additively manufactured by LDED technology. A LDED-manufactured WC-Co sample was examined by optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and x-ray diffraction (XRD). Electron backscatter diffraction (EBSD) experiment was also performed to validate results obtained from XRD test. This material is commonly used for deposition of protective coatings due to its high hardness and excellent wear resistance. To this end, hardness and wear resistance of the LDED-processed samples were also investigated in this study. All the tests were also repeated on high-velocity oxygen fuel (HVOF)-deposited WC-Co with the same composition for the purpose of comparison. LDED sample showed slightly higher porosity (~4%) compared to the HVOF one (~3%). Both samples experience decomposition of the carbides into compound phases as indicated by XRD results. EBSD test results also confirmed the ones obtained from XRD and detected WC, Co, W<sub>2</sub>C, and W<sub>3</sub>Co<sub>3</sub>C in both samples while some more complex phases such as W<sub>9</sub>Co<sub>3</sub>C<sub>4</sub> was found in LDED sample. The LDED-deposited sample also displays unique dendritic and eutectic structures that improve the hardness and wear properties compared to the homogenous HVOF coating instead of higher porosity level. The higher wear resistance of LDED sample is also associated with its higher hardness.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 2-3","pages":"658 - 673"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-025-01933-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-025-01933-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, laser deposition technologies have made significant advancements in their ability to manufacture high-temperature metals and ceramics. One of these technologies, known as laser direct energy deposition (LDED), has the potential to deposit a wide range of materials from polymers to refractory materials, ceramics and functionally graded materials. This study evaluates major microstructural characteristics of WC-17 Co additively manufactured by LDED technology. A LDED-manufactured WC-Co sample was examined by optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and x-ray diffraction (XRD). Electron backscatter diffraction (EBSD) experiment was also performed to validate results obtained from XRD test. This material is commonly used for deposition of protective coatings due to its high hardness and excellent wear resistance. To this end, hardness and wear resistance of the LDED-processed samples were also investigated in this study. All the tests were also repeated on high-velocity oxygen fuel (HVOF)-deposited WC-Co with the same composition for the purpose of comparison. LDED sample showed slightly higher porosity (~4%) compared to the HVOF one (~3%). Both samples experience decomposition of the carbides into compound phases as indicated by XRD results. EBSD test results also confirmed the ones obtained from XRD and detected WC, Co, W2C, and W3Co3C in both samples while some more complex phases such as W9Co3C4 was found in LDED sample. The LDED-deposited sample also displays unique dendritic and eutectic structures that improve the hardness and wear properties compared to the homogenous HVOF coating instead of higher porosity level. The higher wear resistance of LDED sample is also associated with its higher hardness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thermal Spray Technology
Journal of Thermal Spray Technology 工程技术-材料科学:膜
CiteScore
5.20
自引率
25.80%
发文量
198
审稿时长
2.6 months
期刊介绍: From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving. A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization. The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信