Deformed solutions of the Yang–Baxter equation associated to dual weak braces

IF 1 3区 数学 Q1 MATHEMATICS
Marzia Mazzotta, Bernard Rybołowicz, Paola Stefanelli
{"title":"Deformed solutions of the Yang–Baxter equation associated to dual weak braces","authors":"Marzia Mazzotta,&nbsp;Bernard Rybołowicz,&nbsp;Paola Stefanelli","doi":"10.1007/s10231-024-01502-7","DOIUrl":null,"url":null,"abstract":"<div><p>A recent method for acquiring new solutions of the Yang–Baxter equation involves deforming the classical solution associated with a skew brace. In this work, we demonstrate the applicability of this method to a dual weak brace <span>\\(\\left( S,+,\\circ \\right) \\)</span> and prove that all elements generating deformed solutions belong precisely to the set <span>\\(\\mathcal {D}_r(S)=\\{z \\in S \\mid \\forall a,b \\in S \\, \\, (a+b) \\circ z = a\\circ z-z+b \\circ z\\}\\)</span>, which we term the <i>distributor of </i><i>S</i>. We show it is a full inverse subsemigroup of <span>\\(\\left( S, \\circ \\right) \\)</span> and prove it is an ideal for certain classes of braces. Additionally, we express the distributor of a brace <i>S</i> in terms of the associativity of the operation <span>\\(\\cdot \\)</span>, with <span>\\(\\circ \\)</span> representing the circle or adjoint operation. In this context, <span>\\((\\mathcal {D}_r(S),+,\\cdot )\\)</span> constitutes a Jacobson radical ring contained within <i>S</i>. Furthermore, we explore parameters leading to non-equivalent solutions, emphasizing that even deformed solutions by idempotents may not be equivalent. Lastly, considering <i>S</i> as a strong semilattice <span>\\([Y, B_\\alpha , \\phi _{\\alpha ,\\beta }]\\)</span> of skew braces <span>\\(B_\\alpha \\)</span>, we establish that a deformed solution forms a semilattice of solutions on each skew brace <span>\\(B_\\alpha \\)</span> if and only if the semilattice <i>Y</i> is bounded by an element 1 and the deforming element <i>z</i> lies in <span>\\(B_1\\)</span>.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 2","pages":"711 - 731"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01502-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01502-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A recent method for acquiring new solutions of the Yang–Baxter equation involves deforming the classical solution associated with a skew brace. In this work, we demonstrate the applicability of this method to a dual weak brace \(\left( S,+,\circ \right) \) and prove that all elements generating deformed solutions belong precisely to the set \(\mathcal {D}_r(S)=\{z \in S \mid \forall a,b \in S \, \, (a+b) \circ z = a\circ z-z+b \circ z\}\), which we term the distributor of S. We show it is a full inverse subsemigroup of \(\left( S, \circ \right) \) and prove it is an ideal for certain classes of braces. Additionally, we express the distributor of a brace S in terms of the associativity of the operation \(\cdot \), with \(\circ \) representing the circle or adjoint operation. In this context, \((\mathcal {D}_r(S),+,\cdot )\) constitutes a Jacobson radical ring contained within S. Furthermore, we explore parameters leading to non-equivalent solutions, emphasizing that even deformed solutions by idempotents may not be equivalent. Lastly, considering S as a strong semilattice \([Y, B_\alpha , \phi _{\alpha ,\beta }]\) of skew braces \(B_\alpha \), we establish that a deformed solution forms a semilattice of solutions on each skew brace \(B_\alpha \) if and only if the semilattice Y is bounded by an element 1 and the deforming element z lies in \(B_1\).

对偶弱支撑Yang-Baxter方程的变形解
最近获得Yang-Baxter方程新解的方法涉及变形与斜撑相关的经典解。在这项工作中,我们证明了该方法对对偶弱括号\(\left( S,+,\circ \right) \)的适用性,并证明了生成变形解的所有元素都精确地属于集合\(\mathcal {D}_r(S)=\{z \in S \mid \forall a,b \in S \, \, (a+b) \circ z = a\circ z-z+b \circ z\}\),我们称其为s的分配子。我们证明了它是\(\left( S, \circ \right) \)的一个全逆子半群,并证明了它是某些类大括号的理想。此外,我们用运算\(\cdot \)的结合律来表示大括号S的分配符,其中\(\circ \)表示圆或伴随运算。在这种情况下,\((\mathcal {D}_r(S),+,\cdot )\)构成了包含在s中的Jacobson根环。此外,我们探讨了导致非等价解的参数,强调即使是由幂等幂等的变形解也可能不等价。最后,考虑S是斜撑\(B_\alpha \)的强半格\([Y, B_\alpha , \phi _{\alpha ,\beta }]\),我们建立了一个变形解在每个斜撑\(B_\alpha \)上形成一个解的半格,当且仅当半格Y被单元1包围并且变形单元z位于\(B_1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信