Symplectic Grassmannians and cyclic quivers

IF 1 3区 数学 Q1 MATHEMATICS
Evgeny Feigin, Martina Lanini, Matteo Micheli, Alexander Pütz
{"title":"Symplectic Grassmannians and cyclic quivers","authors":"Evgeny Feigin,&nbsp;Martina Lanini,&nbsp;Matteo Micheli,&nbsp;Alexander Pütz","doi":"10.1007/s10231-024-01506-3","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this paper is to extend the quiver Grassmannian description of certain degenerations of Grassmann varieties to the symplectic case. We introduce a symplectic version of quiver Grassmannians studied in our previous papers and prove a number of results on these projective algebraic varieties. First, we construct a cellular decomposition of the symplectic quiver Grassmannians in question and develop combinatorics needed to compute Euler characteristics and Poincaré polynomials. Second, we show that the number of irreducible components of our varieties coincides with the Euler characteristic of the classical symplectic Grassmannians. Third, we describe the automorphism groups of the underlying symplectic quiver representations and show that the cells are the orbits of this group. Lastly, we provide an embedding into the affine flag varieties for the affine symplectic group.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 2","pages":"793 - 814"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01506-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01506-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this paper is to extend the quiver Grassmannian description of certain degenerations of Grassmann varieties to the symplectic case. We introduce a symplectic version of quiver Grassmannians studied in our previous papers and prove a number of results on these projective algebraic varieties. First, we construct a cellular decomposition of the symplectic quiver Grassmannians in question and develop combinatorics needed to compute Euler characteristics and Poincaré polynomials. Second, we show that the number of irreducible components of our varieties coincides with the Euler characteristic of the classical symplectic Grassmannians. Third, we describe the automorphism groups of the underlying symplectic quiver representations and show that the cells are the orbits of this group. Lastly, we provide an embedding into the affine flag varieties for the affine symplectic group.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信