Earthquakes and seismic hazard for Norway and Svalbard

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Conrad Lindholm, Hilmar Bungum, Federica Ghione, Abdelghani Meslem, Chen Huang, Volker Oye
{"title":"Earthquakes and seismic hazard for Norway and Svalbard","authors":"Conrad Lindholm,&nbsp;Hilmar Bungum,&nbsp;Federica Ghione,&nbsp;Abdelghani Meslem,&nbsp;Chen Huang,&nbsp;Volker Oye","doi":"10.1007/s10950-024-10270-z","DOIUrl":null,"url":null,"abstract":"<div><p>We document a complete seismic hazard study for mainland Norway and the Svalbard archipelago. The study is based on a Probabilistic Seismic Hazard Analysis (PSHA) method, and for the first time a new earthquake catalogue is presented publicly that covers Norway, Svalbard and the adjacent offshore regions. The catalogue is developed from an extensive analysis of historical earthquakes combined with more recent instrumental data with 33,864 reports between 1497 through 2018, and with magnitudes up to Mw 6.7. With this catalogue seismic hazard is computed for 10% exceedance in 475 years through a logic tree computation with 12 branches: two area-zonations, one zonation free branch and four GMPEs. These 12 branches were defined with the aim to reduce the model bias, i.e., to centre the model, and to capture the epistemic uncertainty of the results. While the conventional Vs30 reference velocity is usually around 800 m/s we have targeted a reference velocity of 1200 m/s, based on extensive documentation of Norwegian rock velocities. This has significant bearing on the calculated hazard and provides for results that better reflect the bedrock conditions in Norway. As a result of this, the predicted shaking intensities are lower than the values previously reported in the (1998) national building code. In the Supplementary Information we have provided a brief overview of the seismotectonic setting, some tests that further demonstrate the uncertainty in our hazard estimates, a model for H/V ground-motion response spectra, examples of the sensitivity to the bedrock reference velocity and a comparison between the present study and the ESHM20 results.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"29 1","pages":"107 - 126"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10950-024-10270-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10270-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We document a complete seismic hazard study for mainland Norway and the Svalbard archipelago. The study is based on a Probabilistic Seismic Hazard Analysis (PSHA) method, and for the first time a new earthquake catalogue is presented publicly that covers Norway, Svalbard and the adjacent offshore regions. The catalogue is developed from an extensive analysis of historical earthquakes combined with more recent instrumental data with 33,864 reports between 1497 through 2018, and with magnitudes up to Mw 6.7. With this catalogue seismic hazard is computed for 10% exceedance in 475 years through a logic tree computation with 12 branches: two area-zonations, one zonation free branch and four GMPEs. These 12 branches were defined with the aim to reduce the model bias, i.e., to centre the model, and to capture the epistemic uncertainty of the results. While the conventional Vs30 reference velocity is usually around 800 m/s we have targeted a reference velocity of 1200 m/s, based on extensive documentation of Norwegian rock velocities. This has significant bearing on the calculated hazard and provides for results that better reflect the bedrock conditions in Norway. As a result of this, the predicted shaking intensities are lower than the values previously reported in the (1998) national building code. In the Supplementary Information we have provided a brief overview of the seismotectonic setting, some tests that further demonstrate the uncertainty in our hazard estimates, a model for H/V ground-motion response spectra, examples of the sensitivity to the bedrock reference velocity and a comparison between the present study and the ESHM20 results.

挪威和斯瓦尔巴群岛的地震和地震危险
我们为挪威大陆和斯瓦尔巴群岛记录了一个完整的地震危险研究。该研究基于概率地震危害分析(PSHA)方法,首次公开发布了涵盖挪威、斯瓦尔巴群岛和邻近近海地区的新地震目录。该目录是根据对历史地震的广泛分析,结合最近的仪器数据,从1497年到2018年,有33,864份报告,震级高达6.7兆瓦。在此目录下,通过12个分支的逻辑树计算,计算了475年超过10%的地震危险性:2个分区,1个无分区分支和4个GMPEs。定义这12个分支的目的是减少模型偏差,即以模型为中心,并捕获结果的认知不确定性。虽然传统的Vs30参考速度通常在800米/秒左右,但根据挪威岩石速度的大量文件,我们的目标是1200米/秒的参考速度。这对计算危险度有重要影响,并提供更好地反映挪威基岩条件的结果。因此,预测的震动强度低于1998年国家建筑规范中先前报告的值。在补充资料中,我们提供了地震构造背景的简要概述,进一步证明我们危险性估计的不确定性的一些测试,H/V地震动响应谱模型,对基岩参考速度的敏感性示例以及本研究与ESHM20结果之间的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信