{"title":"Physics-Informed Neural Networks for Predicting Particle Properties in Plasma Spraying","authors":"K. Bobzin, H. Heinemann, A. Dokhanchi","doi":"10.1007/s11666-025-01965-x","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma spraying is a key industrial coating process that exhibits intricate nonlinear interactions among process parameters. This complexity makes accurate predictions of particle properties, which greatly affect process behavior, very challenging. Specifically, particle velocities and temperatures profoundly impact coating quality and process efficiency. Conventional methods often require empirical correlations and extensive parameter tuning due to their limited ability to capture the underlying physics within this intricate system. This study introduces physics-informed neural networks (PINNs) as a solution. By seamlessly integrating known physical laws and constraints directly into the model architecture, PINNs offer the potential to learn the underlying physics of the system. For comparison, artificial neural networks (ANNs) are also developed. Computational fluid dynamics simulations of a plasma generator and plasma jet model provide data to train both ANN and PINN models. The study reveals an improvement in particle velocity prediction through the proposed PINN model, demonstrating its capability to handle complex relationships. However, challenges arise in predicting particle temperature, warranting further investigation. The developed models can aid in optimizing the plasma spraying process by predicting essential particle properties and guiding necessary process adjustments to enhance coating quality.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 2-3","pages":"885 - 892"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-025-01965-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-025-01965-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma spraying is a key industrial coating process that exhibits intricate nonlinear interactions among process parameters. This complexity makes accurate predictions of particle properties, which greatly affect process behavior, very challenging. Specifically, particle velocities and temperatures profoundly impact coating quality and process efficiency. Conventional methods often require empirical correlations and extensive parameter tuning due to their limited ability to capture the underlying physics within this intricate system. This study introduces physics-informed neural networks (PINNs) as a solution. By seamlessly integrating known physical laws and constraints directly into the model architecture, PINNs offer the potential to learn the underlying physics of the system. For comparison, artificial neural networks (ANNs) are also developed. Computational fluid dynamics simulations of a plasma generator and plasma jet model provide data to train both ANN and PINN models. The study reveals an improvement in particle velocity prediction through the proposed PINN model, demonstrating its capability to handle complex relationships. However, challenges arise in predicting particle temperature, warranting further investigation. The developed models can aid in optimizing the plasma spraying process by predicting essential particle properties and guiding necessary process adjustments to enhance coating quality.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.