{"title":"Deep learning based earthquake and vehicle detection algorithm","authors":"Deniz Ertuncay, Andrea de Lorenzo, Giovanni Costa","doi":"10.1007/s10950-024-10267-8","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic recorders register vibrations from all possible sources. Even though the purpose of the seismic instrument is, usually, to record ground motions coming from tectonic sources, other sources such as vehicles can be recorded. In this study, a machine learning model is developed by using a convolutional neural network (CNN) to separate three different classes which are earthquakes, vehicles, and other noises. To do that vehicle signals from various accelerometric stations from Italy are visually detected. Together with the vehicle signals noise and earthquake information coming from Italy are used. Inputs of the database are 10 s long seismic traces along with their frequency content from three channels of the seismic recorder. CNN model has an accuracy rate of more than 99 % for all classes. To understand the capabilities of the model, seismic traces with vehicles and earthquakes are given as input to the model which the model successfully separates different classes. In the case of the superposition of an earthquake and a vehicle, the model prediction is in favor of the earthquake. Moreover, earthquake signals from various databases are predicted with more than 90 % accuracy.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"29 1","pages":"269 - 281"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10950-024-10267-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10267-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Seismic recorders register vibrations from all possible sources. Even though the purpose of the seismic instrument is, usually, to record ground motions coming from tectonic sources, other sources such as vehicles can be recorded. In this study, a machine learning model is developed by using a convolutional neural network (CNN) to separate three different classes which are earthquakes, vehicles, and other noises. To do that vehicle signals from various accelerometric stations from Italy are visually detected. Together with the vehicle signals noise and earthquake information coming from Italy are used. Inputs of the database are 10 s long seismic traces along with their frequency content from three channels of the seismic recorder. CNN model has an accuracy rate of more than 99 % for all classes. To understand the capabilities of the model, seismic traces with vehicles and earthquakes are given as input to the model which the model successfully separates different classes. In the case of the superposition of an earthquake and a vehicle, the model prediction is in favor of the earthquake. Moreover, earthquake signals from various databases are predicted with more than 90 % accuracy.
期刊介绍:
Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence.
Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.