Alteration of internal electron migration pathways in La-doped Ag3PO4 for improved photocatalytic stability†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bing Wang, Yao Liu, Hong Hao, YuZhen Zhao, ZeMin He, WenQi Song, EnZhou Liu, Zhuo Li and ZongCheng Miao
{"title":"Alteration of internal electron migration pathways in La-doped Ag3PO4 for improved photocatalytic stability†","authors":"Bing Wang, Yao Liu, Hong Hao, YuZhen Zhao, ZeMin He, WenQi Song, EnZhou Liu, Zhuo Li and ZongCheng Miao","doi":"10.1039/D5QM00039D","DOIUrl":null,"url":null,"abstract":"<p >Metal ion doping is an effective strategy to improve the charge carrier separation pathways in semiconductors. In this study, La<small><sup>3+</sup></small> ions were introduced into Ag<small><sub>3</sub></small>PO<small><sub>4</sub></small><em>via</em> an <em>in situ</em> co-precipitation method, forming p-type doped La<small><sub><em>x</em></sub></small>Ag<small><sub>3−<em>x</em></sub></small>PO<small><sub>4</sub></small> without altering the original cubic morphology of Ag<small><sub>3</sub></small>PO<small><sub>4</sub></small>. The introduction of La<small><sup>3+</sup></small> led to a reduction in the band gap, an expansion of the light absorption range, and an increase in electron localization. Density functional theory (DFT) calculations revealed that La doping introduces new states within the band gap, facilitating energy transitions and altering the electronic structure. Time-dependent DFT (TDDFT) calculations confirmed that the introduction of La<small><sup>3+</sup></small> enables photoexcited electrons to predominantly migrate from Ag 4d and O 2p orbitals to La 4d and P 2p orbitals. This key finding unveiled the anti-photocorrosion mechanism of La<small><sub><em>x</em></sub></small>Ag<small><sub>3−<em>x</em></sub></small>PO<small><sub>4</sub></small>. Free radical capture experiments and electron paramagnetic resonance (EPR) analysis demonstrated that La doping enhances the electron migration efficiency in La<small><sub><em>x</em></sub></small>Ag<small><sub>3−<em>x</em></sub></small>PO<small><sub>4</sub></small>, promoting the conversion of ˙O<small><sub>2</sub></small><small><sup>−</sup></small> to ˙OH radicals. This study not only provides an innovative approach for the application of La-doped Ag<small><sub>3</sub></small>PO<small><sub>4</sub></small> in environmental pollutant catalysis but also reveals a novel internal electron transfer pathway and the underlying mechanism for enhanced photocatalytic activity.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 7","pages":" 1189-1204"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00039d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal ion doping is an effective strategy to improve the charge carrier separation pathways in semiconductors. In this study, La3+ ions were introduced into Ag3PO4via an in situ co-precipitation method, forming p-type doped LaxAg3−xPO4 without altering the original cubic morphology of Ag3PO4. The introduction of La3+ led to a reduction in the band gap, an expansion of the light absorption range, and an increase in electron localization. Density functional theory (DFT) calculations revealed that La doping introduces new states within the band gap, facilitating energy transitions and altering the electronic structure. Time-dependent DFT (TDDFT) calculations confirmed that the introduction of La3+ enables photoexcited electrons to predominantly migrate from Ag 4d and O 2p orbitals to La 4d and P 2p orbitals. This key finding unveiled the anti-photocorrosion mechanism of LaxAg3−xPO4. Free radical capture experiments and electron paramagnetic resonance (EPR) analysis demonstrated that La doping enhances the electron migration efficiency in LaxAg3−xPO4, promoting the conversion of ˙O2 to ˙OH radicals. This study not only provides an innovative approach for the application of La-doped Ag3PO4 in environmental pollutant catalysis but also reveals a novel internal electron transfer pathway and the underlying mechanism for enhanced photocatalytic activity.

Abstract Image

改变la掺杂Ag3PO4的内部电子迁移路径以提高光催化稳定性
金属离子掺杂是改善半导体中载流子分离途径的有效策略。在本研究中,通过原位共沉淀法将La3+离子引入Ag3PO4中,在不改变Ag3PO4原始立方形态的情况下形成p型掺杂LaxAg3−xPO4。La3+的引入减小了带隙,扩大了光吸收范围,增加了电子局域化。密度泛函理论(DFT)计算表明,La掺杂在带隙内引入了新的态,促进了能量跃迁并改变了电子结构。时间相关DFT (TDDFT)计算证实,La3+的引入使光激发电子主要从Ag 4d和O 2p轨道迁移到La 4d和P 2p轨道。这一关键发现揭示了LaxAg3−xPO4的抗光腐蚀机制。自由基捕获实验和电子顺磁共振(EPR)分析表明,La掺杂提高了LaxAg3−xPO4中的电子迁移效率,促进了˙O2−向˙OH自由基的转化。本研究不仅为la掺杂Ag3PO4在环境污染物催化中的应用提供了创新途径,而且揭示了一种新的内部电子转移途径和增强光催化活性的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信